Nokia Customer Care NPL-4/5 Series Transceivers

System Module and User Interface

[This page left intentionally blank]

Table of Contents

	Page No
Glossary of Terms	7
Introduction	10
Electrical modules	
Interconnection diagram	
Temperature conditions	
Humidity	
System Module	12
Baseband module	
Technical summary	13
PWB	15
DC characteristics	
External and internal signals and connections	
UI board interface signals	24
Display interface signals	25
System connector interface signals	
SIM interface signals	27
FCI interface signals	
Camera interface signals	
FM radio interface signals	
Compass interface signals	
Functional Description	
Modes of operation	
No supply	
Backup	
Acting dead	
Active	
Sleep mode	
Charging	
Power up and reset	
Power up with PWR key	34
Power up when charger is connected	34
Battery	34
A/D channels	
Digital camera	
FM radio	
Electrical compass	
Thermometer	
Backup battery	
SIM interface	
FCI (Functional Cover Interface)	40
Memory	41
External memory	42
Compass	43
Earth magnetic field	43
Heading angle or azimuth (a)	44
Inclination (d)	44
Declination (I)	44

Tilt (s)	45
HW Block Diagram	46
HW block functions	46
Magnetometer Sensor	48
Main features	48
Block diagram	49
Magnetometer control interface	49
Pin Assignment	49
Test Circuitry	51
	51
Main features	52
Block diagram and functional descriptions	52
MagIC control interface	53
Pin assignment	53
MagIC ASIC interface – Magnetometer sensor	53
MagIC ASIC – UPP interface	54
MagIC ASIC – UEME interface	55
MagIC ASIC – UPP – External power supply interface	55
MagIC – magnetometer sensor interface for constant current driver	56
Power supplies	56
Introduction	56
Using VIO for DVDD supply	56
Using external regulator for AVDD	56
Compass and phone basics	
Phone directions	57
General description	58
Operation modes	58
Compass function main features	58
Compass display menu	58
Compass display results	58
Compass calibration SW	59
User assisted calibration	59
Compass declination menu	59
Testnoints	
Set/Reset	60
VBRIDGE	
Channel output A	
Channel output R	
Service Software Interface (Phoenix)	61
Performance	62
Calibration basics	62
Calibration process flow	02
Compass digital values limit values	63
Clock distribution	65
liser Interface	
Disnlay	66
III Board	
Power supply for LEDs	,

Keyboard LEDs driver	68
Display and air bubble LED driver	69
Flashlight LEDs driver	69
Internal microphone	70
Internal speaker	71
IHF	71
Headset connections	72
Vibra	73
RF Module	74
RF frequency plan	75
DC characteristics	76
Regulators	76
Power distribution	77
RF characteristics	78
RF block diagram	79
RF block diagram NPL-4/5	79
Frequency synthesizers	80
Receiver	80
Transmitter	81
Antenna switch module	82
Power Amplifier	83
RF ASIC Helgo	84
AFC function	84
Antenna	84

List of Figures

		Page No
Fig 1	Interconnection diagram	
Fig 2	Baseband blocks.	13
Fig 3	PWB vias	
Fig 4	Power Distribution Diagram	
Fig 5	Battery Pack Contacts	
Fig 6	Camera Connections to Baseband	
Fig 7	FM Radio Audio-, Antenna- and Digital Interface Connections	
Fig 8	Baseband and Compass Interface	
Fig 9	Ambient Temperature Sensor Interface to BB	
Fig 10	UPP/UEMEK SIM Interface Connections	40
Fig 11	FCI Interface	
Fig 12	FCI Connector Pin Order on PWB	
Fig 13	Earth's Magnetic Field	
Fig 14	Earths's Magnetic Field Components	
Fig 15	Block Diagram	
Fig 16	Magnetometer Sensor Block Diagram	
Fig 17	Pin Assignment In Package	50
Fig 18	Test Circuitry	51
Fig 19	Offset strap coil current effect	51
Fig 20	Block Diagram	
Fig 21	Directions Through Phone	57

Timing and Voltage Level I	60
What Happened on Calibration (Track on x/y Plane while rotating)	63
Clock Distribution Diagram	65
User Interface Connections	
Display Block	
UI Board	67
VLED Voltage Supply	68
Keyboard Led Driver and Control Diagram	69
Display and Air Bubble LEDs driver and Control Diagram	69
Flashlight Driver and Control	
Microphone Connection	
IEarpiece Connection	71
IHF Connection	71
NPL-4/5 Audio Connections	73
RF Frequency plan	75
Power distribution diagram	77
RF Block Diagram	
Antenna Switch Module	83
Power Amplifier	
	Timing and Voltage Level I

Glossary of Terms

ACI	Accessory Control Interface
ADC	Analog-Digital Converter
AEC	Acoustic Echo Canceller
AFC	Automatic Frequency Control
AGC	Automatic Gain Control
AIF	Application Interface
API	Application Programming Interface
ARM	Processor architecture
ASIC	Application Specific Integrated Circuit
BB	Baseband
CCI	Camera Control Interface
ССР	Compact Camera Port
CMT	Cellular Mobile Telephone (MCU and DSP)
CPU	Central Processing Unit
CTSI	Clocking Timing Sleep Interrupt
CSP	Chip Scale Package
DAC	Digital-Analog Converter
DAI	Digital Audio Interface
DB	Dual band
DCT3	Digital Core Technology, 3rd generation
DCN	Offset Cancellation control signal
DLL	Dynamic Link Library
DRC	Dynamic Range Controller
DSP	Digital Signal Processor

EGSM	Extended – GSM
EFR	Enhanced Full Rate
EGPRS	Enhanced General Packet Radio Service
EMC	Electromagnetic compatibility
EMI	Electromagnetic Interference
EXT RF	External RF
FBUS	Asynchronous Full Duplex Serial Bus
GPRS	General Packet Radio Service
GSM	Global System for Mobile communications
HS	Half Rate Speech
HSCSD	High Speed Circuit Switched Data
IC	Integrated Circuit
I/O	Input/Output
IrDA	Infrared Association
LCD	Liquid Crystal Display
LNA	Low Noise Amplifier
MBUS	1-wire half duplex serial bus
MCU	Micro Controller Unit
MDI	MCU-DSP Interface
MFI	Modulator and Filter Interface
PA	Transmit Power Amplifier
PC	Personal Computer
PCM	Pulse Code Modulation
PCM SIO	Synchronous serial bus for PCM audio transferring

NOKIA

Nokia Customer Care

PCMCIA	PC Memory Card International Association
PIFA	Planar Inverted F-antenna
PWB	Printed Wiring Board
RF	Radio Frequency
SIM	Subscriber Identity Module
UEMEK	Enhanced Universal Energy Management
UI	User Interface
UPP	Universal Phone Processor
VCX0	Voltage Controlled Crystal Oscillator
VCTCX0	Voltage Controlled Temperature Compensated Crystal Oscillator.

Introduction

Electrical modules

The system module consists of Radio Frequency (RF) and baseband (BB). User Interface (UI) contains display, keyboard, IR link, vibra, HF/HS connector and audio parts.

FM radio is located on the main PWB.

The electrical part of the keyboard is located in separate UI PWB. It is connected to radio PWB through spring connectors.

The Baseband blocks provide the MCU, DSP, external memory interface and digital control functions in the UPP ASIC. Power supply circuitry, charging, audio processing and RF control hard ware are in the UEMEK ASIC.

The purpose of the RF block is to receive and demodulate the radio frequency signal from the base station and to transmit a modulated RF signal to the base station.

The UI module is described in a dedicated section of the manual.

Interconnection diagram

Figure 1: Interconnection diagram

Temperature conditions

Specifications are met within range of -10...+55 deg. C ambient temperature Storage temperature range -40...+70 deg. C

Humidity

Relative humidity range is 5... 95%.

This module is not protected against water. Condensated or splashed water might cause malfunction momentary. Long term wetness will cause permanent damage.

System Module

The System module (or Engine) consists of Baseband and RF sub-modules, each described below.

Baseband module

Product NPL-4/5 is a DCT4 Active segment phone. There are two variants: An EGSM900 / GSM1800 / GSM1900 phone and a US variant with GSM850/1800/1900.

The HW has the following features:

- HSCSD, GPRS (MSC10) and EGPRS (MSC6)
- DCT4 engine with UPP8M v3.5 and UEMEk v1.1
- AMR and 16 MIDI tones
- 128/16 Mbit Psram Combo memory
- Passive display with 4k colours
- Battery BL-5B
- Pop-Port interface
- 5-way navigation key with select
- Electrical compass
- FCI on bottom cover
- VGA Camera
- Vibra
- IHF
- FM Radio
- IrDA
- Torch
- PTT key
- Sidekeys

The NPL-4/5 BB is based on the DCT4 engine and is compatible to the Pop-Port accessories. The DCT4/4.5 engine consists basically of two ASICs. The UEMEK (Enhanced Universal Energy Management) IC including voltage regulators, charge control and audio circuits, audio IFH amplifier from DCT4.5) and the UPP (Universal Phone Processor including MCU, DSP and RAM from DCT4).

Technical summary

The picture below shows the main Baseband function blocks

Figure 2: Baseband blocks.

Baseband is running from power rails 2.8V analog voltage and 1.8V I/O voltage. UPP core voltages can be lowered down to 1.0V, 1.3V and 1.5V. UEMEK includes 7 linear LDO (Low Drop-Out) regulator for baseband and 7 regulators for RF. It also includes 4 current sources for biasing purposes and internal usage. UEMEK also includes SIM interface which has supports both 1.8V and 3V SIM cards. **Note:** 5V SIM cards are no longer supported by DCT-4 generation baseband.

A real time clock function is integrated into the UEMEK, which utilizes the same 32kHz clock supply as the sleep clock. A backup power supply is provided for the RTC-battery, which keeps the real time clock running when the main battery is removed. The backup power supply is a rechargeable surface mounted Li-lon battery. The backup time with the battery is 30 minutes minimum.

A UEMEK ASIC handles the analog interface between the baseband and the RF section. UEMEK provides A/D and D/A conversion of the in-phase and quadrature receive and transmit signal paths and also A/D and D/A conversions of received and transmitted audio signals to and from the user interface.

The UEMEK supplies the analog TXC and AFC signals to RF section according to the UPP DSP digital control. Data transmission between the UEMEK and the UPP is implemented using two serial busses, DBUS for DSP and CBUS for MCU. There are also separate signals for PDM coded audio. Digital speech processing is handled by the DSP inside UPP ASIC.

UEMEK is a dual voltage circuit, the digital parts are running from the baseband supply 1.8V and the analog parts are running from the analog supply 2.78V.

VBAT is directly used for Vibra, LED-driver, Audio amplifier and FCI (Functional Cover Interface).

The baseband architecture supports a power saving function called "sleep mode". This sleep mode shuts off the VCTCXO, which is used as system clock source for both RF and baseband. During the sleep mode the system runs from a 32 kHz crystal. The phone is waken up by a timer running from this 32 kHz clock supply. The sleep time is determined by network parameters. Sleep mode is entered when both the MCU and the DSP are in standby mode and the normal VCTCXO clock is switched off.

The baseband supports both internal and external microphone inputs and speaker outputs. UEMEK also includes third microphone input. This input is used for FM-radio. Input and output signal source selection and gain control is done by the UEMEK according to control messages from the UPP. Keypad tones, DTMF, and other audio tones are generated and encoded by the UPP and transmitted to the UEMEK for decoding. An external vibra alert control signals are generated by the UEMEK with separate PWM outputs.

The NPL-4/5 uses D-class amplifier to amplifying IHF speaker audios. It gives more sound pressure from speaker and efficiency is in good level to improve thermal performance compared to AB-class.

VGA Camera is connected to baseband (UPP) through HW accelerator IC. The camera data bus is common with display bus. The HWA is taking care of camera control and it is compressing the pictures.

NPL-4/5 has 2-axes electrical compass. It is implemented with magnetoresistive sensor and MagIC ASIC.

NPL-4/5 has two serial control interfaces: FBUS and MBUS. FBUS and MBUS can be accessed through production test pattern and FBUS can be also accessed thought Toma-hawk System Connector.

The FCI interface is located to front bottom side area of the phone. This means that only B-cover can be an active cover.

EMC shielding is implemented using a metal body profile, RF cans and PWB grounding. Some components are outside of shielding. Heat generated by the circuitry is conducted out via the PWB ground planes and by using buried vias between PWB layers.

NOKIA

Nokia Customer Care

PWB

Characteristics of the PWB

8 layer board

Double side assembled

Figure 3: PWB vias

DC characteristics

Table 1: Battery voltage range

Signal	Note
Battery Voltage (Idle)	-0.35.5V
Battery Voltage (Call)	Max 4.8V
Charger Input Voltage	-0.3V16V

Name	Voltage (/)	Current	Current (mA)		
	Min	Nom	Max	Max	Sleep Max	
VANA	2.7	2.78	2.86	80		
VFLASH1	2.61	2.78	2.95	70	1.5	
VIO	1.72	1.8	1.88	150	0.5	
VCORE	1.48	1.57	1.66	200	0.2	
VAUX1	1.745	1.8	1.855	50	0.5	
	2.91	3	3.09			
VAUX2	2.7	2.78	2.86	70	0.5	
VAUX3	2.7	2.78	2.86	10	0.5	
VSIM	1.745	1.8	1.855	25	0.5	
	2.91	3	3.09			
VR1A/B	4.6	4.75	4.9	10	-	
VR2	2.7	2.78	2.86	100	-	
	-2.61	-2.78	-2.95			
VR3	2.7	2.78	2.86	20	-	
VR4	2.7	2.78	2.86	50	0.1	
VR5	2.7	2.78	2.86	50	0.1	
VR6	2.7	2.78	2.86	50	0.1	
VR7	2.7	2.78	2.86	45	-	

Table 2: UEMEK Regulators

Signal		Voltage (V) Current (mA			t (mA)	Note
name	Min	Nom	Max	Sleep Iq	Max	
VCAMDIG	1.755	1.8	1.845	0.0015	150	Power supply for camera digital parts. Imax = 150mA. Cam and HWA max current 60mA
VANA_EXT	2.72	2.8	2.88	0.0015	150	Power supply for camera, compass and FM- radio analog parts. Imax = 150mA.

 Table 3: 1-3 External Regulators

Figure 4: Power Distribution Diagram

External and internal signals and connections

This section describes the external and internal electrical connection and interface levels on the baseband. The electrical interface specifications are collected into tables that covers a connector or a defined interface.

Signal	From	То	Parameter	Min	Тур	Max	Unit	Function
VBAT	Battery	PA & UEMEK	Voltage	2.95	3.6	4.2	V	Battery supply. Cut- off level of DCT4 regulators is 3.2V. Losses in PWB tracks and ferrites are taken account to
			Current			2000	MA	minimum
			Current drawn by PA when "off"		0.8	2	μΑ	voltage level.
VR1A	UEMEK	HELG085	Voltage	4.6	4.75	4.9	V	Supply for
VR1B			Current		2	10	MA	charge
							L	SHF VCO
VPo			Voltago	2.7	2 70	2.96		tuning.
VNZ	UEIVIEN	HELGU85	Current	2.7	2.78	2.80	V MA	
						100		modulators, buffers, ALS
\/ D 2	LIEMEK	VCTCYO	Voltage	2.7	2 79	2 96	V	Supply for
113	ULIVILK	HELGO85	Current	2.7	2.78	2.80	ν MΔ	
			current			20		PLL digital
VR4	UEMEK	HELGO85	Voltage	2.7	2.78	2.86	V	
			Current			50	МА	
VR5	UEMEK	HELG085	Voltage	2.7	2.78	2.86	V	Supply for
			Current			50	MA	HELG085PL L; dividers, LO- buffers, prescaler,

Table 4: AC and DC	Characteristics	of DCT4 RF	-Baseband	Voltage Supplies
--------------------	-----------------	------------	-----------	------------------

VPG	LIEMEK		Voltage	27	2 7 0	2.96	V	Supply for
VINO	ULIVILK	TILLUU05	Current	2.7	2.70	2.00	ν MA	HELGO85
			Current			50		RR and
								INAs
								2.0.0
VR7	UEMEK	SHF VCO	Voltage	2.7	2.78	2.86	V	Supply for
			Current			30	MA	SHF VCO
								1
VrafDE01			Valtaga	1 22 4	1.00	1 200	\/	Voltogo
VICINFUI	UEIVIEK	HELG005	vollage	1.554	1.55	1.300	v	Reference
								for
								HELGO85
								DCN2
								op.amps.
			Current			100	μA	Note:
							•	Below
								600Hz
								noise
								density is
								allowed to
								increase 20
								dB/oct
			Temp Coef	-65		65	μV/C	
			Valtar	4 00 4	4.05	4.000	\/	Valtar
vretKF02	UEIVIEK	AR ^{FXI}	voitage	1.334	1.35	1.366	v	voitage
								for
								HELGO85
								bias block.
								Not used
								for
								HELGO85
H	I	I	L					

Table 5: AC and DC Characteristics of DCT4 F	RF-Baseband Voltage Supplies
--	------------------------------

Signal	From	То	Parameter		Input Cha	racteristics		Function
name				Min	Тур	Max	Unit	
ТХР	UPP	HELG085	"1"	1.38		1.88	V	Power
(RFGenOut3)			"0"	0		0.4	V	amplifier enable
			Load Resistance	10		220	kΩ	
			Load Capacitanc e			20	pF	
								-
TXA	UPP	HELG085	"1"	1.38		1.88	V	Power
			"0"	0		0.4	V	control loop
			Load Resistance	10		220	kΩ	enable
			Load Capacitanc e			20	pF	
DEBucEpo1			"1"	1 20		1 00	V	REbuc
NFDUSEIIA I X	UFF	HELOU85	۱ "∩"	1.38		1.88	V V	enable
^			Current	0		0.4 50	V A	Chaole
			Lood	10		220	μA kO	
			resistance	10		220	KS 2	
			Load capacitance			20	p⊦	
RFBusData	UPP	PP HELGO85	"1"	1.38		1.88	V	RFbus
			"0"	0		0.4	V	data;
			Load resistance	10		220	kΩ	read/write
			Load capacitance			20	pF	
			Data			10	MHz	_
REBusClk	LIPP	HELGO85	"1"	1 38		1.88	V	REBus clock
TH DUSCIN		TILLOOUS	"0"	1.50		0.4	V	TH Bus clock
			Load	10		220	kΩ	
			Load capacitance			20	pF	-
			Data			10	MHz	-
RECET			"1"	1 20		1 0 5	V	Reset to
(GENIOOE)	UFF	HELOU85	۱ "∩"	1.38		1.85	v V	HEI GORE
			Load capacitance	0		20	pF	
			Load resistance	10		220	kΩ	
							:	

Table 6: AC and DC Characteristics of DCT4 RF-Baseband Digital Signals

Signal	From	То	Parameter	Min	Тур	Max	Unit	Function
VCTCX0	VCTCXO	UPP	Frequency	13		26	MHz	High
			Signal amplitude	0.2	0.8	2	Vpp	stability clock signal
				10			KΩ	for the logic
						10	pF	circuits, AC coupled. Distorted
						-8	dBc	sinewave e.g.
				300			mVpp	sawtooth.
			Duty Cycle	40		60	%	-
VCTCXOGno	I VCTCXO	UPP	DC Level		0		V	Ground for reference clock
rxi/rxq	HELG085	UEMEK	Voltage swing (static)	1.35	1.4	1.45	Vpp	Received demodulate d IQ signals
			DC level	1.3	1.35	1.4	V]
						0.2	DB	
				-5		5	Deg	
TXIP / TXIN	UEMEK	EMEK HELGO88	Differential voltage swing (static)	2.15	2.2	2.25	Vpp	
			DC level	1.17	1.2	1.23	V	
			Source Impedance			200	Ω	-
TXQP / TXQN	UEMEK	HELGO85	Same spec as	for TXIP / TXI	N			
AFC	UEMEK	VCTCX0	Voltage Min	0		0.1	V	Automatic frequency
			Max	2.4		2.6		control signal for
			Resolution	11			Bits	VCTCXO
			Load resistance and	1		100	kΩ nF	
			capacitance					
			Source Impedance			200	Ω	

Table 7: AC and DC Characteristic	s of DCT4 RF-Baseband	Analogue Signals
-----------------------------------	-----------------------	-------------------------

TxC	UEMEK	HELGO85	Voltage			0.1	V	Transmitter
			Min					power level
				2.4				and
			Max					ramping
			Source			200	Ω	control
			Impedance					
			Resolution	10			Bits	
RFTemp	HELGO85	UEMEK	Voltage at -		1,57		V	Temperatur
			Voltage at		17			RF in
			+25oC		1,7			HELGO
			Voltage at		1,79			ASIC.
			+60oC					
DC_sense	PA	UEMEK	Voltage		0.6		V	PA final
								stage
								quiescent
								current
								level
								information
								•
IPA1 / IPA2	UEMEK	PA	Output	0		2.7	V	PA final
			Voltage					stage
								quiescent
			Current	0		5	MA	current
			range					adjustment
			Resolution	4			Bits	
			Current	-6		6	%	
			tolerance					
VCTCXOTE	PA sheet	UEMEK A/D	Voltage					
MP								
				1.0		1.0	V	Agilant
				1.2		1.0	V V	REMD
				0.7		0.1	V	Hitachi
				. 0		0.1		in nou Chi

UI board interface signals

1 ROW(0) 0.7xVIO VIO High Keyboard matrix 2 COL(0) 0.7xVIO VIO High Keyboard matrix 3 ROW(1) 0.7xVIO VIO High Keyboard matrix 3 ROW(1) 0.7xVIO VIO High Keyboard matrix 4 COL(1) 0.7xVIO VIO High Keyboard matrix 5 ROW(2) 0.7xVIO VIO High Keyboard matrix 5 ROW(2) 0.7xVIO VIO High Keyboard matrix 6 COL(2) 0.7xVIO VIO High Keyboard matrix 7 ROW(3) 0.7xVIO VIO High Keyboard matrix 7 ROW(3) 0.7xVIO VIO High Keyboard matrix 8 COL(2) 0.7xVIO VIO High Keyboard matrix 9 COL(4) 0.7xVIO VIO High Keyboard matrix 10 ROW(4) 0.7xVIO <t< th=""><th>Pin</th><th>Signal</th><th>Min</th><th>Nom</th><th>Max</th><th>Condition</th><th>Note</th></t<>	Pin	Signal	Min	Nom	Max	Condition	Note
Image: constraint of the second sec	1	ROW(0)	0.7xVI0		VIO	High	Keyboard matrix
2 COL(0) 0.7xVI0 VI0 High Keyboard matrix col 0 3 ROW(1) 0.7xVI0 VI0 High Keyboard matrix col 0 3 ROW(1) 0.7xVI0 VI0 High Keyboard matrix row 1 4 COL(1) 0.7xVI0 VI0 High Keyboard matrix row 1 5 ROW(2) 0.7xVI0 VI0 High Keyboard matrix row 2 6 COL(2) 0.7xVI0 VI0 High Keyboard matrix row 2 6 COL(2) 0.7xVI0 VI0 High Keyboard matrix row 2 7 ROW(3) 0.7xVI0 VI0 High Keyboard matrix row 3 7 ROW(3) 0.7xVI0 VI0 High Keyboard matrix row 3 8 COL(4) 0.7xVI0 VI0 High Keyboard matrix row 3 9 COL(4) 0.7xVI0 VI0 High Keyboard matrix row 3 10 ROW(4) 0.7xVI0 VI0 High Keyboard matrix row 3							
2 CUL(J) 0.7X00 VIO Inight colo Reveloard matrix colo 3 ROW(1) 0.7XVIO VIO High row 1 Colo 4 COL(1) 0.7XVIO VIO High row 1 Keyboard matrix row 1 5 ROW(2) 0.7XVIO VIO High row 2 Keyboard matrix row 1 5 ROW(2) 0.7XVIO VIO High row 2 Keyboard matrix row 2 6 COL(2) 0.7XVIO VIO High row 2 Keyboard matrix row 2 6 COL(2) 0.7XVIO VIO High row 2 Keyboard matrix row 3 7 ROW(3) 0.7XVIO VIO High row 3 Keyboard matrix row 3 8 COL(3) 0.7XVIO VIO High row 3 Keyboard matrix row 4 9 COL(4) 0.7XVIO VIO High row 3 Keyboard matrix row 3 10 ROW(4) 0.7XVIO VIO High row 3 Keyboard matrix row 4 11 Temp 0 0.3XVIO Low Keyboar	0	COL (0)	0 7.3//0)	0.3xVI0	LOW	row 0
Image: second	2	COL(0)	0.7xvi0		VIO	High	Keyboard matrix col 0
3 ROW(1) 0.7xVI0 VI0 High row 1 Keyboard matrix row 1 4 COL(1) 0.7xVI0 VI0 High High Keyboard matrix col 1 5 ROW(2) 0.7xVI0 VI0 High High Keyboard matrix row 2 6 COL(2) 0.7xVI0 VI0 High High Keyboard matrix row 2 6 COL(2) 0.7xVI0 VI0 High High Keyboard matrix row 2 7 ROW(3) 0.7xVI0 VI0 High High Keyboard matrix row 3 7 ROW(3) 0.7xVI0 VI0 High High Keyboard matrix row 3 8 COL(3) 0.7xVI0 VI0 High High Keyboard matrix row 3 9 COL(4) 0.7xVI0 VI0 High High Keyboard matrix row 4 10 ROW(4) 0.7xVI0 VI0 High High Keyboard matrix row 4 11 Temp 0 0.3xVI0 Low Separate GND for keyboard LED for 12 GND OV - - Separ			C)	0.3xVI0	Low	
Image: second	3	ROW(1)	0.7xVI0		VIO	High	Keyboard matrix row 1
4 COL(1) 0.7xVI0 VI0 High col Keyboard matrix col 5 ROW(2) 0.7xVI0 VI0 High High Keyboard matrix row 2 6 COL(2) 0.7xVI0 VI0 High High Keyboard matrix row 2 6 COL(2) 0.7xVI0 VI0 High High Keyboard matrix col 2 7 ROW(3) 0.7xVI0 VI0 High High Keyboard matrix row 3 7 ROW(3) 0.7xVI0 VI0 High High Keyboard matrix row 3 8 COL(3) 0.7xVI0 VI0 High High Keyboard matrix row 3 9 COL(4) 0.7xVI0 VI0 High High Keyboard matrix row 4 10 ROW(4) 0.7xVI0 VI0 High High Keyboard matrix row 4 11 Temp 0 0.3xVI0 Low Keyboard matrix row 4 11 Temp 0 0.3xVI0 Low Keyboard matrix row 4 11 Temp 0 0.3xVI0 Low Keyboard matrix row 4<			C)	0.3xVI0	Low	
0 0.3xVI0 Low 5 R0W(2) 0.7xVI0 VI0 High Keyboard matrix row 2 6 C0L(2) 0.7xVI0 VI0 High Keyboard matrix row 2 7 R0W(3) 0.7xVI0 VI0 High Keyboard matrix row 3 7 R0W(3) 0.7xVI0 VI0 High Keyboard matrix row 3 8 C0L(3) 0.7xVI0 VI0 High Keyboard matrix row 3 9 C0L(4) 0.7xVI0 VI0 High Keyboard matrix row 4 9 C0L(4) 0.7xVI0 VI0 High Keyboard matrix row 4 10 R0W(4) 0.7xVI0 VI0 High Keyboard matrix row 4 11 Temp 0 0.3xVI0 Low 4 12 <td>4</td> <td>COL(1)</td> <td>0.7xVI0</td> <td></td> <td>VIO</td> <td>High</td> <td>Keyboard matrix col 1</td>	4	COL(1)	0.7xVI0		VIO	High	Keyboard matrix col 1
5 ROW(2) 0.7xVI0 VI0 High row 2 Keyboard matrix row 2 6 COL(2) 0.7xVI0 VI0 High High Keyboard matrix col 2 7 ROW(3) 0.7xVI0 VI0 High High Keyboard matrix col 2 7 ROW(3) 0.7xVI0 VI0 High High Keyboard matrix row 3 8 COL(3) 0.7xVI0 VI0 High High Keyboard matrix row 3 9 COL(4) 0.7xVI0 VI0 High High Keyboard matrix row 3 9 COL(4) 0.7xVI0 VI0 High High Keyboard matrix row 4 10 ROW(4) 0.7xVI0 VI0 High High Keyboard matrix row 4 11 Temp 0 0.3xVI0 Low Ambient temperature sensor 12 GND 0V - - - - 13 VLED- OV - - - - 14 VLED+ 7.2V 7.7V 8.2V LED on OV -			C)	0.3xVI0	Low	
0 0.3xVI0 Low 6 COL(2) 0.7xVI0 VI0 High Keyboard matrix col 2 7 ROW(3) 0.7xVI0 VI0 High Keyboard matrix row 3 7 ROW(3) 0.7xVI0 VI0 High Keyboard matrix row 3 8 COL(3) 0.7xVI0 VI0 High Keyboard matrix col 3 9 COL(4) 0.7xVI0 VI0 High Keyboard matrix col 3 9 COL(4) 0.7xVI0 VI0 High Keyboard matrix col 4 10 ROW(4) 0.7xVI0 VI0 High Keyboard matrix col 4 10 ROW(4) 0.7xVI0 VI0 High Keyboard matrix col 4 11 Temp 0 0.3xVI0 Low Matrix col 2 11 Temp 0 0.3xVI0 Low Ambient temperature sensor 12 GND OV - - - - 13 VLED- 7.2V 7.7V 8.2V LED on Supply Voltage for Keyboard LED [note 1] 14 VLED+ 7.2V 7.7V 8.2V LED off - 15 GND OV - - - -	5	ROW(2)	0.7xVI0		VIO	High	Keyboard matrix row 2
6 COL(2) 0.7XVIO VIO High Low Keyboard matrix col 2 7 ROW(3) 0.7XVIO VIO High Keyboard matrix row 3 7 ROW(3) 0.7XVIO VIO High Keyboard matrix row 3 8 COL(3) 0.7XVIO VIO High Keyboard matrix col 3 9 COL(4) 0.7XVIO VIO High Keyboard matrix col 4 9 COL(4) 0.7XVIO VIO High Keyboard matrix col 4 10 ROW(4) 0.7XVIO VIO High Keyboard matrix col 4 10 ROW(4) 0.7XVIO VIO High Keyboard matrix col 4 11 Temp 0 0.3xVIO Low 11 Temp 0 0.7XVIO VIO High Keyboard tarix col 4 12 GND 0V Iow Separate GND for keypad LEDs Separate GND for keyboard LED [note 1] 14 VLED+ 7.2V 7.7V 8.2V LED o			C)	0.3xVI0	Low	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6	COL(2)	0.7xVI0		VIO	High	Keyboard matrix col 2
7 ROW(3) 0.7xVI0 VI0 High cov Keyboard matrix row 3 8 COL(3) 0.7xVI0 VI0 High col 3 Keyboard matrix col 3 9 COL(4) 0.7xVI0 VI0 High col 3 Keyboard matrix col 3 9 COL(4) 0.7xVI0 VI0 High cov Keyboard matrix col 4 10 ROW(4) 0.7xVI0 VI0 High cov 4 Keyboard matrix col 4 10 ROW(4) 0.7xVI0 VI0 High cov 4 Keyboard matrix row 4 11 Temp 0 0.3xVI0 Low Ambient temperature sensor 12 GND OV - - - - 13 VLED- OV - - - - 14 VLED+ 7.2V 7.7V 8.2V LED on Cov Supply Voltage for Keyboard LED [note1] - 15 GND OV - - - - 16 FCI Vout 2.8V 5.5V On OV			C)	0.3xVI0	Low	
00.3xVI0Low8COL(3)0.7xVI0VI0HighKeyboard matrix col 39COL(4)0.7xVI0VI0HighKeyboard matrix col 49COL(4)0.7xVI0VI0HighKeyboard matrix col 410ROW(4)0.7xVI0VI0HighKeyboard matrix row 410ROW(4)0.7xVI0VI0HighKeyboard matrix row 411Temp00.3xVI0Low11Temp00.3xVI0Low11Temp00.13xVI0Low11Temp0VIAmbient temperature sensor12GND0VII13VLED-0VISeparate GND for keybaard LEDs14VLED+7.2V7.7V8.2VLED onSupply Voltage for Keyboard LED [note1]15GND0VIED offI16FCI Vout 0V0VIED offI17FCI GND0VII18FCI Da 0V1.19V1.9Vhigh 0V19Fci Clk 0V1.19V1.9Vhigh 0.51VI20FCIInt 1.19V1.9Vhigh 0.51VI	7	ROW(3)	0.7xVI0		VIO	High	Keyboard matrix row 3
8 COL(3) 0.7xVI0 VI0 High col 3 Keyboard matrix col 3 9 COL(4) 0.7xVI0 VI0 High col 4 Keyboard matrix col 4 10 ROW(4) 0.7xVI0 VI0 High col 4 Keyboard matrix col 4 10 ROW(4) 0.7xVI0 VI0 High col 4 Keyboard matrix col 4 11 Temp 0 0.3xVI0 Low Ambient temperature sensor 12 GND OV - - 13 VLED- OV - Separate GND for keyboard LEDs 14 VLED+ 7.2V 7.7V 8.2V LED on cov Supply Voltage for Keyboard LED [note1] 15 GND OV - - - - 15 GND OV - - - - 18 FCI Da 1.19V 1.9V high OV - - 19 Fci Ikt 1.19V 1.9V high OV - - 20 FCIInt 1.19V 1.9V high OV 0.51V Iow <td></td> <td></td> <td>C</td> <td>)</td> <td>0.3xVI0</td> <td>Low</td> <td></td>			C)	0.3xVI0	Low	
00.3xVI0Low9COL(4)0.7xVI0VI0High col 4Keyboard matrix col 410ROW(4)0.7xVI0VI0High col 4Keyboard matrix row 410ROW(4)0.7xVI0VI0High row 4Keyboard matrix row 411Temp00.3xVI0Low11Temp00.3xVI0Low11Temp00.3xVI0Low11Temp00VLow12GND0V13VLED-0V-Separate GND for keypad LEDs14VLED+7.2V7.7V8.2VLED on LED off15GND0V16FCI Vout2.8V 0V5.5V 0V0n 0V17FCI GND0V18FCI Da 0V1.19V 0V1.9V 0.51Vhigh 1.9V 0.51V-20FCIInt1.19V 0V0.51V 0.51Vhigh 1.9W-	8	COL(3)	0.7xVI0		VIO	High	Keyboard matrix col 3
9 COL(4) 0.7xVI0 VI0 High col 4 Keyboard matrix col 4 10 ROW(4) 0.7xVI0 VI0 High High Keyboard matrix row 4 10 ROW(4) 0.7xVI0 VI0 High High Keyboard matrix row 4 11 Temp 0 0.3xVI0 Low Ambient temperature sensor 12 GND OV - - 13 VLED- OV - - 14 VLED+ 7.2V 7.7V 8.2V LED on keypad LEDs Supply Voltage for Keyboard LED [note1] 15 GND OV - - - - 16 FCI Vout OV 2.8V 5.5V ON On OV Off - 18 FCI Da 1.19V OV 1.9V high OV - - 19 Fci Clk 1.19V OV 0.51V low - - 20 FCIInt 1.19V 0.51V low - -			C)	0.3xVI0	Low	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	COL(4)	0.7xVI0		VIO	High	Keyboard matrix col 4
10ROW(4)0.7xVI0VI0High 0Keyboard matrix row 411Temp00.3xVI0LowAmbient temperature sensor12GND0V13VLED-0V-Separate GND for keypad LEDs14VLED+7.2V7.7V8.2VLED onSupply Voltage for Keyboard LED [note1]15GND0V16FCI Vout2.8V0V0V-18FCI Da1.19V0V1.9Vhigh 0.51V-19Fci Clk1.19V0.51Vlow-20FCIInt1.19V0.51Vlow-			C)	0.3xVI0	Low	
Image: constraint of the second sec	10	ROW(4)	0.7xVI0		VIO	High	Keyboard matrix row 4
11TempAmbient temperature sensor12GNDOVImage: Sensor13VLED-OVImage: Separate GND for keypad LEDsSeparate GND for keypad LEDs14VLED+7.2V7.7V8.2VLED on Keyboard LED [note1]14VLED+7.2V7.7V8.2VLED on Keyboard LED [note1]15GNDOVImage: Separate GND for Keyboard LED [note1]16FCI Vout VOV2.8V OVOVOn OV17FCI GNDOVImage: Separate GND for Keyboard LED [note1]18FCI Da OV1.19V OV1.9V O.51VNigh Iow19Fci Clk OV1.19V OV1.9V O.51VNigh Iow20FCIInt OV1.19V OV1.9V IowNigh Iow			C)	0.3xVI0	Low	
12GNDOVImage: Separate GND for keypad LEDs13VLED-OVImage: Separate GND for keypad LEDs14VLED+7.2V7.7V8.2VLED onSupply Voltage for Keyboard LED [note1]14VLED+7.2V7.7V8.2VLED offImage: Separate GND for Keyboard LED [note1]15GNDOVImage: Separate GND for Keyboard LED for GNDOVImage: Separate GND for Keyboard LED [note1]16FCI Vout2.8V5.5VOn OVImage: Separate GND for Keyboard LED for GND17FCI GNDOVImage: Separate GND for Keyboard LED for GNDImage: Separate GND for Keyboard LED for Keyboard LED for GND18FCI Da1.19V0.51VIow19Fci Clk1.19V1.9Vhigh for Kigh for Keyboard for Keyboar	11	Temp					Ambient temperature sensor
13VLED-0VSeparate GND for keypad LEDs14VLED+7.2V7.7V8.2VLED onSupply Voltage for Keyboard LED [note1]14VLED+7.2V7.7V8.2VLED onSupply Voltage for Keyboard LED [note1]15GND0VLED off16FCI Vout2.8V5.5VOn OVOff17FCI GND0V0VImage: Compare the second s	12	GND		0V			
14VLED+7.2V7.7V8.2VLED onSupply Voltage for Keyboard LED [note1]14VLED+7.2V7.7V8.2VLED onSupply Voltage for Keyboard LED [note1]15GND0VLED off16FCI Vout2.8V5.5VOn 0VOV16FCI QND0V0VOff17FCI GND0V0V018FCI Da1.19V1.9Vhigh 0V19Fci Clk1.19V1.9Vhigh 0V20FCIInt1.19V1.9Vhigh 0V0V0.51Vlow0V	13	VLED-		ΟV			Separate GND for keypad LEDs
OV LED off 15 GND OV IED off 16 FCI Vout 2.8V 5.5V On 0V OV OV OV OV 17 FCI GND OV OV OV 18 FCI Da 1.19V 1.9V high 0V 0.51V Iow OV 19 Fci Clk 1.19V 0.51V Iow 20 FCIInt 1.19V 1.9V high 0V 0.51V Iow 0.51V Iow	14	VLED+	7.2V	7.7V	8.2V	LED on	Supply Voltage for Keyboard LED [note1]
15 GND OV OV 16 FCI Vout 2.8V 5.5V On 0V OV OV OV Off 17 FCI GND OV OV OV 18 FCI Da 1.19V 1.9V high 0V 0.51V Iow OV 19 Fci Clk 1.19V 0.51V Iow 20 FCIInt 1.19V 1.9V high 0V 0.51V Iow 0.51V Iow				οV		LED off	
16 FCI Vout 0V 2.8V 0V 5.5V 0V 0n 0Ff 17 FCI GND 0V 0Ff 18 FCI Da 1.19V 0V 1.9V 0.51V high 0w 19 Fci Clk 1.19V 0V 1.9V 0.51V high 0w 20 FCIInt 1.19V 0V 1.9V 0.51V high 0w	15	GND	1	0V			
OV OV Off 17 FCI GND OV Image: Constraint of the second secon	16	FCI Vout	2.8V	1	5.5V	On	
17 FCI GND OV high 18 FCI Da 1.19V 1.9V high 0V 0.51V low 1.9V high 19 Fci Clk 1.19V 1.9V high 0V 0.51V low 0.51V low 20 FCIInt 1.19V 1.9V high 0V 0.51V low 0.51V low			0V		0V	Off	
18 FCI Da 1.19V 1.9V high 0V 0.51V low 19 Fci Clk 1.19V 1.9V high 0V 0.51V low 1.9V 1.9V 20 FCIInt 1.19V 1.9V high 0V 0.51V low 0.51V low	17	FCI GND		0V			
19 Fci Clk 1.19V 1.9V high 0V 0.51V low 20 FCIInt 1.19V 1.9V high 0V 0.51V low 000000000000000000000000000000000000	18	FCI Da	1.19V 0V		1.9V 0.51V	high Iow	
OV 0.51V Iow 20 FCIInt 1.19V 1.9V high 0V 0.51V Iow 1.9V	19	Fci Clk	1.19V		1.9V	high	
20 FCIInt 1.19V 1.9V high 0V 0.51V low			0V	ļ	0.51V	low	ļ
	20	FCIInt	1.19V 0V		1.9V 0.51V	high Iow	

 Table 8: UI board interface signals

Display interface signals

Pin	Signal	Min	Nom	Max	Condition	Note
1	VDDI	1.72V	1.8V	1.88V		Logic voltage
						supply
						Connected to
						VIO
2	RESX	0.7*VDDI		VDDI	Logic '1'	Reset
		0		0.3*VDDI	Logic '0'	Active low
		1us			trw	Reset active
3	SDA	0.7*VDDI		VDDI	Logic '1'	Serial data
		0		0.3*VDDI	Logic '0'	
		100ns			tsds	Data setup time
		100ns			tsdh	Data hold time
4	SCLK	0.7*VDDI		VDDI	Logic '1'	Serial clock
		0		0.3*VDDI	Logic '0'	input
				6.5MHz	Max frequency	
		250ns			tscyc	Clock cycle
		100ns			tshw	Clock high
		100ns			tslw	Clock low
5	CSX	0.7*VDDI		VDDI	Logic '1'	Chip select
		0		0.3*VDDI	Logic '0'	Active low
		60ns			tcss	CXS low before
						SCLK rising
						edge
		100ns			tcsh	CXS low after
						SCLK rising
						edge
6	VDD	2.70V	2.78V	2.86V		Supply Voltage.
						Connected to
						VFLASH1
7	NC					Not Connected
8	GND		0V			Ground
9	VLED-		0V			Return current
	(GND)					
10	VLED		0V		LED off	Supply Voltage
	Display		7.7V		LED on	for LEDs
		7.2V		8.4V		

Table 9: LCD connector

System connector interface signals

Pin	Signal	Min	Nom	Max	Condition	Note
1	VCHAR		11.1Vpeak	16.9 Vpeak	Standard charger	Charger positive input
				7.9 VRMS		
				1.0 Apeak		
		7.0 VRMS	8.4 VRMS	9.2 VRMS	Fast charger	
				850 mA		
2	CHGND		0			Charger ground

Table 10: DC Connector

Table 11: POPPORT System Connector/Bottom Connector

Pin	Signal	Description	Spectral Range	U/I levels	Impedance	Notes
1	CHARGE	V Charge	DC	0-9 V / 0.85 A		
2	GND	Charge GND				
3	ACI	ACI	1 kbit/s	Dig 0 / 2.78V	47 Ω	Insertion & removal detection
4	VOUT	DC out	DC	2.78V / 70mA	100 mΩ	(PWB + conn.) 200mW
5	USB VBUS (Not connected)					
6	FBUS TX		FBUS 115kbit	0 / 2.78V	33 Ω	
7	FBUS RX		FBUS 115kbit	0 / 2.78V	33 Ω	
8	SGND	Data GND		0.85 A	100 m Ω	(PWB + conn.)
9	XMIC N	Audio in	300 - 8k	1Vpp & 2.78V		Ext. Mic Input
10	XMIC P	Audio in	300 - 8k	1Vpp & 2.78V		Ext. Mic Input
11	HSEAR N	Audio out	20 - 20k	1Vpp	10 Ω	Ext. audio out (left)
12	HSEAR P	Audio out	20 - 20k	1Vpp	10 Ω	Ext. audio out (left)
13	HSEAR R P	Audio out	20 - 20k	1Vpp	10 Ω	
14	HSEAR R N	Audio out	20 - 20k	1Vpp	10 Ω	

SIM interface signals

Table 12: SIM Connector

Pin	Name	Parameter	Min	Тур	Max	Unit	Notes
1	VSIM	1.8V SIM	1.6	1.8	1.9	V	Supply
		Card					voltage
		3V SIM	2.8	3	3.2	V	
		Card					
2	SIMRST	1.8V SIM	0.9xVSIM		VSIM	V	SIM reset
		Card	0		0.15xVSIM		(output)
		3V SIM	0.9xVSIM		VSIM	V	
		Card	0		0.15xVSIM		
3	SIMCLK	Frequency		3.25		MHz	SIM clock
		Trise/Tfall			50	ns	
		1.8V Voh	0.9xVSIM		VSIM	V	
		1.8V Vol	0				
		3V Voh	0.9xVSIM		VSIM	V	
		3V Vol	0				
4	DATA	1.8V Voh	0.9xVSIM		VSIM	V	SIM data
		1.8V Vol	0		0.15xVSIM		(output)
		3V Voh	0.9xVSIM		VSIM		
		3V Vol	0		0.15xVSIM		
		1.8V Vih	0.7xVSIM		VSIM	V	SIM data
							(input)
		1.8V Vil	0		0.15xVSIM		Trise/Tfall
							max 1us
		3V Vil	0.7xVSIM		VSIM		
		3V Vil	0		0.15xVSIM		
5	NC						Not
							connected
6	GND	GND	0		0	V	Ground

FCI interface signals

BB Signal	FCI Signal	Min	Nom	Max	Condition	Note
VBATT	VOUT	2.80V		5.5V	V	
		0		110	mA	
				0.5	Ω impedance	
			1		uF	
GND	GND			0.5	Ω impedance	
GenI0(22)	FCI SDA	1.19V		1.9V	High	
In/Out		0		0.51V	Low	
		1.4	2	2.6	kΩ	Pull-up in
						terminal
				120	pF	Capacitance
GenIO(2)	FCI SCL	1.19V		1.9V	High	
Out		0		0.51V	Low	
		1.4	2	2.6	kΩ	Pull-up in
						terminal
				120	pF	Capacitance
GenIO(25)	FCI INT	1.19V		1.9V	High	
In		0		0.51V	Low	
		70	100	130	kΩ	Pull-up in
						terminal
				120	pF	Capacitance
GenIO(18)	CTRL	1.19V		1.9V	High	FCI ASIP power
In		0		0.51V	Low	control
VIO	VCC	1.72V	1.80V	1.88V	V	Power supply for
						pull up resistors

Table 13: FCI Interface

Camera interface signals

Table 14: Camera Interface

BB Signal	Camera Signal	Min	Nom	Max	Condition	Note
VANA_EXT	AVDD	2.72V	2.80V	2.88V	V	I _{max} = 16mA
VCAMDIG	DVDD	1.72V	1.80V	1.88V	V	I _{max} = 100mA, Common for camera and HWA
GenIO(3)	CLK	1.4V	1.8V	1.88V	High	Clock signal for Camera and HWA.
Out		0		0.4V	Low	Common with
			13		MHz	compass
GenI0(27)	TXDA	1.4V	1.8V	1.88V	High	Control data for
Out		0V		0.4V	Low	HWA
GenIO(28)	CSX	1.4V	1.8V	1.88V	High	CSX signal for
Out		0		0.6V	Low	HWA
GenI0(26)	CE	1.4V	1.8V	1.88V	High	CE signal for HWA
Out		0		0.4V	Low	and camera
GenIO(1)	Reg_en	1.4V	1.8V	1.88V	High	1.8V and 2.8V regulators
Out		0		0.4V	Low	enable/disable

LCDUI(1)	RXDA	1.4V	1.8V	1.88V	High	Camera data
In/Out	LCDCamTxD	0		0.4V	Low	signal
	а					
LCDUI(0)	DACLK	1.4V	1.8V	1.88V	High	Camera data clock
Out	LCDCamClk	0		0.4V	Low	

FM radio interface signals

Table 15: FM-radio Interface

BB Signal	FM Radio Signal	Min		Nom	Max	Condition	Note
VANA_EXT	Vcca	2.7V		2.78V	2.86V		I _{Max} 10.5mA
	Vcc(vco)	2.7V		2.78V	2.86V		I _{Max} 940uA
	Vccd	2.7V		2.78V	2.86V		I _{Max} 3.9mA
GenIO(24)	FMClk	1.4V		1.8V	1.88V	High	Reference clock for FM radio
			0		0.4V	Low	module
				32768Hz		Frequency	
		30ppm				Stability	
GenIO(8)	FMWrEn	1.4V		1.8V	1.88V	High	Write/Read
		0V			0.4V	Low	enable
GenIO(11)	FMCtrlClk	1.4V		1.8V	1.88V	High	
			0		0.4V	Low	
					1 MHz	Frequency	
GenIO(12)	FMCtrlDa	1.4V		1.8V	1.88V	High	Bi-directional
			0		0.6V	Low	data
FM Antenna	RF1,RF2	76MHz			108MHz		FM input
							frequency
FM Radio L	FM Audio L			100mV			Audio level
FM Radio R	FM Audio R	24dB		30dB		Channel	
						separation	
		54dB		60dB		S/N	
					2%	Harmonic	
						distortion	

Compass interface signals

			-			
BB Signal	MagIC Signal	Min	Nom	Max	Condition	Note
VANA_EXT	AVDD	2.72V	2.80V	2.88V	V	I_{max} = 10mA and <
						10uA in sleep.
VIO	DVDD	1.72V	1.80V	1.88V	V	$I_{max} = 2mA$ and
						<10uA in sleep.
GenIO(3)	CLK	1.4V	1.8V	1.88V	High	Clock signal for
Out		0		0.4V	Low	MagIC. Common
			13		MHz	with camera
CBUSCLK	CBUSCLK	1.4V	1.8V	1.88V	High	Data clock for
Out		0V		0.4V	Low	MagIC CBUS
CBUSDA	CBUSDA	1.4V	1.8V	1.88V	High	Data for MagIC
In/Out		0		0.6V	Low	and UPP
CBUSENX	CBUSENX	1.4V	1.8V	1.88V	High	CBUS enable
Out		0		0.4V	Low	
PURX	ClrX	1.4V	1.8V	1.88V	High	General reset from
						UEMEK. 0=Reset
		0		0.4V	Low	and $1 = No$ Reset

Table 16: Compass Interface

Functional Description

Modes of operation

Wv1 baseband engine has six different functional modes:

- 1. No supply
- 2. Backup
- 3. Acting Dead
- 4. Active
- 5. Sleep
- 6. Charging

No supply

In NO_SUPPLY mode, the phone has no supply voltage. This mode is due to disconnection of main battery and backup battery or low battery voltage level in both of the batteries.

Phone is exiting from NO_SUPPLY mode when sufficient battery voltage level is detected. Battery voltage can rise either by connecting a new battery with VBAT > VMSTR+ or by connecting charger and charging the battery above VMSTR+.

Backup

In *BACKUP* mode the backup battery has sufficient charge but the main battery can be disconnected or empty (VBAT < VMSTR and VBACK > VBUCOFF).

VRTC regulator is disabled in *BACKUP* mode. VRTC output is supplied without regulation from backup

Acting dead

If the phone is off when the charger is connected, the phone is powered on but enters a state called "*Acting Dead*". To the user, the phone acts as if it was switched off. A battery-charging alert is given and/or a battery charging indication on the display is shown to acknowledge the user that the battery is being charged.

Active

In the *Active* mode the phone is in normal operation, scanning for channels, listening to a base station, transmitting and processing information. There are several sub-states in the active mode depending on if the phone is in burst reception, burst transmission, if DSP is working etc.

In *Active* mode the RF regulators are controlled by SW writing into UEMEK's registers wanted settings:

VR1A can be enabled or disabled. VR2 can be enabled or disabled and its output voltage can be programmed to be 2.78V or 3.3V. VR4 -VR7 can be enabled, disabled, or forced into low quiescent current mode. VR3 is always enabled in Active mode.

Regulator	NOTE				
VFLASH1	Enabled				
VAUX2	Controlled by register writing				
	Default state is off.				
VAUX1	Controlled by register writing.				
	Defaul start up setting 1.8V				
VAUX3	Controlled by register writing.				
VANA	Enabled				
	Disabled in sleep mode				
VIO	Enabled				
VCORE	Enabled				
VSIM	Controlled by register writing.				
VR1A/VR1B	Controlled by register writing				
	Disabled in sleep mode				
VR2	Controlled by register writing				
	Disabled in sleep mode				
VR3	Enabled				
	Disabled in sleep mode				
VR4	Enabled				
	Disabled in sleep mode				
VR5	Enabled				
	Disabled in sleep mode				
VR6	Enabled				
	Disabled in sleep mode				
VR7	Enabled				
	Disabled in sleep mode				
IPA1	Controlled by register writing.				
IPA2	Controlled by register writing.				
IPA3	Controlled by register writing				
VCAMDIG and	External regulators are controlled by				
VANA_EXT	GenIO(01)				

Table 17: Regulator Controls

Sleep mode

Sleep mode is entered when both MCU and DSP are in stand-by mode. Both processors control sleepmode.

When SLEEPX signal (low) is detected UEMEK enters SLEEP mode. VCORE, VIO and VFLASH1 regulators are put into low quiescent current mode. All the RF regulators are disabled in SLEEP. When SLEEPX=1 detected UEMEK enters ACTIVE mode and all functions are activated.

The sleep mode is exited either by the expiration of a sleep clock counter in the UEMEK or by some external interrupt, generated by a charger connection, key press, headset connection etc.

In sleep mode VCTCXO is shut down and 32 kHz sleep clock oscillator is used as reference clock for the baseband.

Charging

Charging can be performed in parallel with any operating mode. In NPL-4/5 the battery type/size is indicated by a 75kOhm BSI-resistor, which is in battery back. The resistor value corresponds to a specific battery capacity. NTC resistor, which is measuring battery temperature is located on an engine board.

The battery voltage, temperature, size and current are measured by the UEMEK controlled by the charging software running in the UPP.

The charging control circuitry (CHACON) inside the UEMEK controls the charging current delivered from the charger to the battery. The battery voltage rise is limited by turning the UEMEK switch off when the battery voltage has reached 4.2 V. Charging current is monitored by measuring the voltage drop across a 220 mOhm. resistor.

Power up and reset

Power up and reset is controlled by the UEMEK ASIC. NPL-4/5 baseband can be powered up in following ways:

- 1 Press power button which means grounding the PWRONX pin on UEMEK
- 2 Connect the charger to the charger input
- 3 Supply battery voltage to the battery pin.
- 4 RTC Alarm, the RTC has been programmed to give an alarm

After receiving one of the above signals, the UEMEK counts a 20ms delay and then enters its reset mode. The watchdog starts up, and if the battery voltage is greater than Vcoff+ a 200ms delay is started tp allow references etc. to settle. After this delay elapses the VFLASH1 regulator is enabled. 500us later VR3, VANA, VIO and VCORE are enabled. Finally the PURX line is held low for 20 ms. This reset, PURX, is fed to the baseband ASIC UPP, resets are generated for the DSP and the MCU. During this reset phase the UEMEK forces the VCXO regulator on regardless of the status of the sleep control input signal to the UEMEK. The sleep signal from the ASIC is used to reset the flash during power up and to put the flash in power down during sleep. All baseband regulators are switched on at the UEMEK power on except for the SIM regulator that is controlled by the MCU. The

UEMEK internal watchdog is running during the UEMEK reset state, with the longest watchdog time selected. If the watchdog expires, the UEMEK returns to power off state. The UEMEK watchdog is internally acknowledged at the rising edge of the PURX signal in order to always give the same watchdog response time to the MCU.

Power up with PWR key

When the Power on key is pressed the UEMEK enters the power up sequence. Pressing the power keycauses the PWRONX pin on the UEMEK to be grounded. The UEMEK PWRONX signal is not part of the keypad matrix. The power key is only connected to the UEMEK. This means that when pressing the power key an interrupt is generated to the UPP that starts the MCU. The MCU then reads the UEMEK interrupt register and notice that it is a PWRONX interrupt. The MCU now reads the status of the PWRONX signal using the UEMEK control bus, CBUS. If the PWRONX signal stays low for a certain time the MCU accepts this as a valid power on state and continues with the SW initialization of the baseband. If the power on key does not indicate a valid power on situation, the MCU powers off the baseband.

Power up when charger is connected

In order to be able to detect and start charging in a case where the main battery is fully discharged (empty) and hence UEMEK has no supply (NO_SUPPLY or BACKUP mode of UEMEK) charging is controlled by START-UP CHARGING circuitry.

Whenever VBAT level is detected to be below master reset threshold (VMSTR-) charging is controlled by START_UP charge circuitry. Connecting a charger forces VCHAR input to rise above charger detection threshold, VCHDET+. By detection start-up charging is started. UEMEK generates 100mA constant output current from the connected charger's output voltage. As battery charges its voltage rises, and when VBAT voltage level higher than master reset threshold limit (VMSTR+) is detected START_UP charge is terminated.

Monitoring the VBAT voltage level is done by charge control block (CHACON). MSTRX='1' output reset signal (internal to UEMEK) is given to UEMEK's RESET block when VBAT>VMSTR+ and UEMEK enters into reset sequence.

If VBAT is detected to fall below VMSTR- during start-up charging, charging is cancelled. It will restart if new rising edge on VCHAR input is detected (VCHAR rising above VCH-DET+).

Battery

NPL-4/5 uses BL-5B 760 mAh Lithium Polymer battery pack. The battery size is 5.7x34x46mm. Other battery packs aren't supported.

Description	Value
Nominal discharge cut-off voltage	3.1V
Nominal battery voltage	3.7V
Nominal charging voltage	4.2V
Maximum charger output current	850 mA
Minimum charger output current	200 mA

Table 18: BL-5B Characteristics

Table 19: Pin Numbering of Battery Pack

Signal name	Pin number	Function
VBAT	1	Positive battery terminal
BSI	2	Battery capacity measurement (fixed resistor inside the battery pack)
GND	3	Ground/negative/comm on battery terminal

Figure 5: Battery Pack Contacts

A/D channels

The UEMEK contains the following A/D converter channels that are used for several measurement purposes. The general slow A/D converter is a 10-bit converter using the UEMEK interface clock for the conversion. An interrupt will be given at the end of the measurement.

The UEMEK's 11-channel analog to digital converter is used to monitor charging functions, battery functions, user interface and RF functions.

The monitored battery functions are battery voltage (VBATADC), battery type (BSI) and battery temperature (BTEMP) indication.

The battery type is recognized through a resistive voltage divider. In phone there is a 100k. pull up resistor and a 75kohm BSI pull down resistor in the same line. Regardless of the battery type the pull down resistor is always same. The battery temperature is measured equivalently from engine board by NTC pull down resistor in the BTEMP line.

The monitored RF functions are PATEMP and VCXOTEMP measurements. PATEMP input is used to measure temperature of the RF-IC HELGO. VCXOTEMP input is used for RF PA manufacturer identification in NPL-4/5.

AUXDET and HEADINT2 inputs can be used for keyboard scanning purposes. These inputs are routed internally from the miscellaneous block. These lines are used for thermometer in NPL-4/5.

The output of the backup battery, VBACK, is connected to the converter using a NMOS switch. There is also a pulldown switch in the VBACK input, which can be used to discharge the back up battery line. The pulldown switch should be disabled during the measurement of the voltage level of the VBACK.

Digital camera

VGA camera module is used in NPL-4/5. Camera is connected to baseband (UPP) through HW Accelerator IC. The camera data bus is common with display bus. External 1.8V and 2.8V regulators are used as a power supply (VDIG and VANA) for camera module and HW accelerator. The 2.8V regulator is common for camera, compass and FM-radio.

VGA camera has a resolution of 640 x 480. Pixel size is 5.6um x 5.6um. Both camera and HW accelerator support sleep functionality in order to minimize the current consumption.

FM radio

FM radio circuitry is implemented using highly integrated radio IC, TEA5767. The MCU SW controls FM radio circuitry through serial bus interface. The FM radio power supply is VANA_EXT, which is common with camera and compass.

Electrical compass

The compass will have two magnetometer channels and it uses anisotropic magnetoresistive (AMR) magnetometer component (containing both X- and Y-axes). Each measurement axis is configured as a 4-element Whetstone bridge converting the magnetic field into differential output voltage. This sensor element is capable of sensing fields in milligauss range. In order to achieve the measurement resolution, the sensor must be frequently reset by a current pulse run through the set/reset coil of the sensor element. The MagIC ASIC will interface the phone engine through the CBUS interface. The calculation of the compass heading and the calibration of the magnetometer are carried out in the phone engine.

NPL-4/5 will have an air-bubble for the user to level the device.

The heading is shown by compass rose in phone display.

Figure 8: Baseband and Compass Interface

Thermometer

The 1% accuracy NTC-resistor is used for ambient temperature measurement. NTC resistor sensor is located on UI-board under the keypad shield. It is connected with two A/D – lines (AuxDet and Headint2) to UEMEK.

Voltages are measured over 1% accuracy resistor that is connected series with temperature sensor. This gives sufficient accuracy for temperature measurement without calibration.

Figure 9: Ambient Temperature Sensor Interface to BB

Backup battery

Backup battery is used in case when main battery is either removed or dis-charged. Backup battery is used for keeping realtime clock running for minimum of 30 minutes.

Rechargeable backup battery is connected between UEMEK VBACK and GND. In UEMEK backup battery charging high limit is set to 3.2V. The cut–off limit voltage (V BUCoff–) for backup battery is 2.0V.

Backup battery charging is controlled by MCU by writing into UEM register. Li-Ion SMD battery type is used. The nominal capacity of the battery is 0.01 mAh.

Parameter Test conditions	Symbol	Min	Тур	Max	Units
Back-up battery voltage	VBACK	2.43		3.3	V
Back-up battery cut-off limit	V_BU _{coff+}	2.04	2.1	2.16	V
	V_BU _{COFF-}	1.94	2	2.06	V
Charging voltage (VBAT 3.4V)	VBU	3.1	3.2	3.3	V
Charging current	I _{limvbu}	150		500	uA

Table 20	Backup	Battery	Circuitry
----------	--------	---------	-----------

SIM interface

The UEMEK contains the SIM interface logic level shifting. The SIM interface can be programmed to support 3V and 1.8V SIM. A register in the UEMEK selects SIM supply voltage. It is only allowed to change the SIM supply voltage when the SIM IF is powered down.

The whole SIM interface locates in two chips UPP and UEMEK.

The SIM interface in the UEMEK contains power up/down, port gating, card detect, data receiving, ATRcounter, registers and level shifting buffers logic. The SIM interface is the electrical interface between the Subscriber Identity Module Card (SIM Card) and mobile phone (via UEMEK device).

Parameter	Variable	Min	Тур	Max	Unit
SIMCARDet, BSI	Vkey	1.94	2.1	2.26	V
comparator Threshold					
SIMCARDet, BSI	Vsimhyst	50	75	100	mV
comparator Hysteresis (1)					

The data communication between the card and the phone is asynchronous half duplex. The clock supplied to the card is in GSM system 1.083 MHz or 3.25 MHz.

Figure 10: UPP/UEMEK SIM Interface Connections

FCI (Functional Cover Interface)

NPL-4/5 has functional cover interface for changeable functional B-cover. The functional cover interface consists of FCI ASIP chip and five contact pads on UI PWB. HW does not support the I2C in BB4.0 engine whereupon interface uses SW emulated I2C protocol. The FCI ASIP chip includes switch for power supply control and EMC filters for data lines.

Figure 12: FCI Connector Pin Order on PWB

Memory

For the MCU UPP includes ROM, 2 Kbytes, that is used mainly for boot code of MCU. To speed up the

MCU operation small 64-byte cache is also integrated as a part of the MCU memory interface. For program memory 8Mbit (512 x 16bit) PDRAM is integrated. RAM block can

also be used as data memory and it is byte addressable. RAM is mainly for MCU purposes but also DSP has also access to it if needed.

MCU code is stored into external flash memory. Size of the flash is 128Mbit (8M x 16bit). The NPL-4/5 baseband supports a burst mode flash with multiplexed address/data bus. Access to the flash memory is performed as 16-bit access. The flash has Read While Write capabilities, which makes the emulation of EEPROM within the flash easy.

External memory

NPL-4/5 uses Multi Chip Package Memory, which combines 128Mbit Muxed Burst Multi-Bank NOR Flash and 16Mbit Muxed PSRAM.

The 128Mbit Flash memory is organized as 8M x16 bit and 16Mbit PSRAM is organized as 1M x16 bit.

The memory architecture of flash memory is designed to divide its memory arrays into 263 blocks and this provides highly flexible erase and program capability.

Compass

This chapter describes electronic compass function integration to baseband. Measurement is based on magnetoresistive sensor and controlled with baseband ASICs, UPP and UEME via MagIC ASIC.

The electronic compass will have two magnetometer channels for detecting x and y direction components of earth magnetic field and it uses Honeywell's anisotropic magnetoresistive (AMR) magnetometer component HMC1052 (containing both x- and y- axes). Both channel rely on the magnetoresistive effect and provide the required sensitivity and linearity to measure the weak magnetic field of the earth.

Each measurement axis is configured as a 4-element Whetstone bridge converting the magnetic field into differential output voltage. This sensor element is capable of sensing fields in milligauss range. In order to achieve the measurement resolution, a current pulse to run through the set/reset coil of the sensor element must frequently reset the sensor. This means basicly compensation of linear offset.

The MagIC ASIC will interface the phone engine through the CBUS. The calculation of the compass heading and the calibration of the magnetometer are carried out in the phone engine.

Earth magnetic field

The magnetic field of the earth is the physical quantity to be evaluated by a compass.

The magnetic field strength on the earth varies with location and covers the range from about 200 to 700 mGauss. Earth magnetic field is assumed to be like as generated by a bar magnet (in the earth). The magnetic field lines point from the earth's south pole to its north pole. Exactly, 2-dimensional magnetometer measures earth magnetic horizon-tal field component.

The field lines are perpendicular to the earth surface at the poles and parallel at the equator. Thus, the earth field points downwards in the northern hemisphere and upwards in the southern hemisphere.

An important fact is, that the magnetic poles do not coincide with the geographical poles, which are defined by the earth's axis of rotation. The angle between the magnetic and the rotation axis is about 11.5°. As a consequence, the magnetic field lines do not exactly point to geographic or "true" north.

Figure 13: Earth's Magnetic Field

Heading angle or azimuth (α)

The angle between magnetic north and the heading direction. Magnetic north is the direction of $x_h y_h$ the earth's field component perpendicular to gravity. Throughout this paper, $x_h y_h$ will be referred to as "horizontal" component of the earth's field.

The compass heading is defined by:

$$Heading(\alpha) = \arctan\left(\frac{y_h}{x_h}\right)$$

The azimuth is the reading quantity of a compass. Throughout this paper, α is counted clockwise from magnetic north, i.e. north is 360° or 0°, east is 90°, south is 180°, west is 270°.

Inclination (δ)

Also known dip. The angle between the earth's field vector and the horizontal plane. As already pointed out, the inclination varies with the actual location on earth, being zero at the equator and approaching $\pm 90^{\circ}$ near the poles.

Declination (λ)

The angle between geographic or true north and magnetic north. Declination is dependent on the actual position on earth. It also has a long-term drift. Declination can be to the east or to the west and can reach values of about $\pm 25^{\circ}$. The azimuth measured by a compass has to be corrected by the declination in order to find the heading direction

with respect to geographic north.

Tilt (σ)

Tilt angle is angle between horizontal level and equipment level. If a compass is tilt, then this inclination has to be considered.

HW Block Diagram

Functionally NPL-4/5 electronic compass consists some main blocks.

Figure 15: Block Diagram

Not used functionality and features of MagIC ASIC on NPL-4/5 compass implementation.

- I²BUS (additional communication channel)
- UART (additional communication channel)
- z channel A/D converter

HW block functions

Magnetometer sensor (2-axis)

• x and y direction magnetic field sensitivity sensors

-differential outputs to MagIC ASIC

set/reset circuitry for

-compensating offset effect

i -improving performance and linearity

Nokia Customer Care

offset strap

-self test capability for magnetometer

-used for production testing

MagIC ASIC

• A/D converter input interface and for magnetometer sensors

-Differential inputs

-40 dB amplifier for signal

Control for Set/Reset circuitry

-Positive and negative pulses for S/R strap

CBUS interface for UPP

-MagIC have dedicated address

- System clock from GenIO3
- Main reset from UEME (PURX)
- Control of offset strap (RegCtrl)

UPP

- MCU SW controls for compass function
- GenIO3System clock generator, MCUclock /2 = 13MHz

-Common with camera function

- CBUS master for MagIC
- Controls external voltage source (VANA_EXT) GenIO1

UEME

- Voltage supply (VIO, 1.8V) for MagIC, digital logic supply voltage and reference
- Controls main reset, PURX

VANA_EXT, analog (external) power supply,

- 2.8V for MagIC analog parts
- Controlled via GenIO01
- Common with camera and FM/Radio function

Magnetometer Sensor

The magnetometer will be implemented with anisotropic magnetoresistive (AMR) magnetometer component. Two-axis linear magnetic sensors are designed as a Wheatstone bridges formed by a magnetoresistive metal film. Sensor acts as resistor which resistance depends on magnetic field strength and direction. This bridge element is capable of sensing fields in milligauss range.

In order to achieve the measurement resolution, a magnetic pulse must frequently reset the sensor. Eliminating and compensating external disturbances will be done via coil strip near of sensor elements with current pulse.

Offset coil strap is used for production level testing and self-testing.

Main features

• Two magnetometer channel blocks (containing X- and Y-axes).

-Measurement with 4-element Wheastone bridge /axes

-Convert magnetic earth field X and Y components to differential outputs

• Set / Reset coil element

-Current pulse to coil for set and reset sensor

• Offset strap coil

-For testing purposes

Block diagram

Figure 16: Magnetometer Sensor Block Diagram

Magnetometer control interface

Pin Assignment

Pin Number	Symbol	1/0	Description
1	GND2 (A)	Ground	Measurement bridge A ground
2	Offset+	Input	Offset coil positive pin
3	Vo+(A)	Output	Positive A measurement brigde output
4	Vcc	Supply	Bias voltage for both measurement bridges
5	NC		
6	Offset-	Output	Offset coil negative pin
7	GND2 (B)	Ground	Measurement bridge B ground
8	S/R+	Input	Set /reset coil negative pin
9	NC		
10	Vo- (B)	Output	Negative B measurement brigde output
11	S/R-	Ouput	Set /reset coil positive pin

12	NC		
13	GND1 (A)	Ground	Measurement bridge A ground
14	Vo- (A)	Output	Negative A measurement bridge output
15	GND1(B)	Ground	Bridge B ground
16	Vo+ (B)	Output	Positive B measurement bridge output

Figure 17: Pin Assignment In Package BOTTOM VIEW

Test Circuitry

Based on constant current generator, which drives internal coil on magnetometer chip. Circuit is controlled via general IO –pin on MagIC/RegCtrl. On current is 2.0mA, off current is 0.00mA.

Figure 18: Test Circuitry

Figure 19: Offset strap coil current effect

Offset strap current will produce 320 to 420digit offset to raw x and y values.

MagIC ASIC

The electronic compass will have two magnetometer channels and it uses anisotropic magnetoresistive (AMR) magnetometer component (containing both X- and Y-axes). Each measurement axis is configured as a 4-element Wheatstone bridge converting the magnetic field into a differential output voltage. This sensor element is capable of sensing fields in milligauss range. In order to achieve the measurement resolution, the sensor must be frequently reset by a current pulse that is driven through the set/reset coil of the sensor element. The ASIC will interface the phone engine through either the CBUS or I2C interface. The calculation of the compass heading and the calibration of the magnetometer are carried out in the phone engine. The ASIC has a third magnetometer channel, but it is not used in this project.

Main features

The ASIC supports three magnetometer axis. The ASIC features are:

- Pre-amplifier followed by a single-shot sigma delta type of ADC for each measurement channel
- H-bridge for driving the SET/RESET coil inside the magnetometer element
- Internal voltage reference for the ADC and the magnetometer bridge
- Digital control interfaces (I2C, CBUS, UART)
- Control registers
- · One-bit digital control output signal to turn on/off the external linear regulator

Block diagram and functional descriptions

Figure 20: Block Diagram

The magnetometer interface has three differential inputs for X-, Y- and Z-bridge respectively. The measurement path for each axis can be enabled/disabled separately and the power consumption of any unused path is minimized. The magneto-resistive bridges of all axes are biased by a single reference voltage (2.2 V) provided by the internal bandgap reference. The voltage from the magneto-resistive bridge is first amplified with a slow, continuoustime stage. This stage has a passive RC-filter at its input. After that, there is a dedicated, second-order sigma-delta ADC for each measurement channel. The sigma delta ADC is making DC-type of instantaneous measurements and thus it is operated in a single-shot mode and the digital conversion result is obtained by using a simple counter only. The measurement path does not have any analog offset-compensation or gain adjustment functions. If needed, the magnetic field measurement range (± 2 gauss) of the measurement chain can be extended by reducing the voltage over the sensor bridge by adding resistors to both sides of the sensor bridge. In this case though, the measurement resolution will be reduced accordingly.

MagIC control interface

Pin assignment

MagIC ASIC interface – Magnetometer sensor

Table 23:	MagIC-	magnetometer	interface
-----------	--------	--------------	-----------

Pad	MagIC Pin Name	MagIC Pin Type	Sensor Pad	Sensor Pin Name	Connection	Function
C1	SRVss1	GND			GND	Ground for S/R tank charge capacitor cir- cuit
D2	SROm1	Analog Output	8	SR- (A,B)	to magnetic sensor S/R-	negative output for S/ R
D1	SROm2	Analog Output	8	SR- (A,B)	to magnetic sensor S/R-	negative output for S/ R
E1	SRVss2	GND			GND	Ground for S/R tank charge capacitor cir- cuit
F1	SROp1	Analog Output	11	SR+ (A,B)	to magnetic sensor S/R+ (between pins is 100nF capacitor)	positive output for S/R (two power pads on die, double bonding)
F2	SROp2	Analog Output	11	SR+ (A,B)	to magnetic sensor S/R+ (between pins is 100nF capacitor)	positive output for S/R (two power pads on die, double bonding)
G2	SRVss3	GND			GND	Ground for S/R tank charge capacitor cir- cuit
G3	SRVdd1	Power supply			from UEME via MagIC to tank charge capacitor 1uF)	Vdd supply for S/R (two power pads on die, double bonding to one pin)

NPL-4/5 System Module and User Interface NOKIA

H3	SRVdd2	Power supply			from UEME via MagIC to tank charge capacitor (1uf)	Vdd supply for S/R (two power pads on die, double bonding to one pin)
G4	InXm	Analog Input	14	Vo- (A)	to magnetic sensor XOUT- (A)	x-axis negative input for A/ converter
H4	InXp	Analog Input	3	Vo+ (A)	to magnetic sensor XOUT+ (A)	x-axis positive input for A/ converter
H5	InYm	Analog Input	10	Vo- (B)	Magnetic sensor YOUT- (B)	y-axis negative input for A/ converter
G5	InYp	Analog Input	16	Vo+ (B)	Magnetic sensor YOUT+ (B)	y-axis positive input for A/ converter
G7	Vbridge	Analog Output	4	Vcc	Magnetic sensor Vbridge voltage	Common voltage bias for all sensor bridges (2.2V) trought MagIC ASIC
F7	Tank- Charge	Analog Output			to tank charge (external) capacitor	Charges the SR tank cap during power-up only (Vdda can go up/ down during PD)
F8	Avdd	Power supply			UEME	Positive Analog Power supply
E7	GndShield	Ground			GND	Dedicated pin to cre- ate a clean substrate supply (guard ring between analog and digital)
E8	Avss	Analog ground			GND	Negative Analog Power supply

MagIC ASIC – UPP interface

Table 24: MagIC-UPP interface

Pad	MagIC Pin Name	MagIC Pin Type	UPP Pin Name	Connection	Function
B2	CbusClk	Digital input	CBUSCLK	UPP – UEME – MagIC bidirectional bus	C bus clock, alterna- tively system clock for MagIC
C3	Clk	Digital Input	GenIO3	from UPP general I/O generated from system clock	MagIC ASIC system clock = 13MHz
A4	CbusDa	Digital I/ O	CBUSDA	UPP - UEME – MagIC bidirectional bus	CBUS data

NOKIA

Nokia Customer Care

B4	CbusEnX	Digital Input		CBUSENX	UPP - UEME – MagIC bidirectional bus	CBUS enable

MagIC ASIC – UEME interface

Table 25: MagIC - UEME interface

Pad	MagIC Pin Name	MagIC Pin Type	UEME Pin Name	Connection	Function
A6	ClrX	Digital Input	PURX	General reset generated by UEME	Main reset
A3	DVdd	Power supply	VIO	Digital power supply / voltage reference	Positive Digital Power supply (1.8V)
C2	DVss	Digital ground	GND	Ground level	Negative Digital Power supply

MagIC ASIC – UPP – External power supply interface Table 26: External power supply interface

Pad	Pin Name	Pin Type	Regulator Pin Name	Connection	Function
	VBAT	Battery supply	Input	Battery supply	
F8	Avdd (MagIC)	Power supply	Output	Analog power supply for compass, FM- radio and camera	Positive Analog Power supply (2.8V)
	GenlO01 (UPP)	Power supply	SD	Used as control signal	On/ off (shutdown) control of external power supply
E8	Avss (MagIC)	Analog ground	GND	Ground level	Negative Analog Power supply

MagIC – magnetometer sensor interface for constant current driver Table 27: Offset strap supply interface

Pad	Pin Name	Pin Type	Pad	Pin Name	Connection	Function
D8	RegCtrl (MagIC)	Digital output			for magnetometer offset strap constant current driver	On/off control
		Current output		loff+	to magnetometer sensor offset strap	Offset strap current, positive
		Current input		loff-	Offset strap return current (-) from magnetometer offset strap	Offset strap current, negative
	GND	Power supply			GND	
	VBAT	Power supply			Power supply for constant current driver	Power supply from battery

Power supplies

Introduction

The MagIC ASIC has two separate voltage supplies. DVDD is supplying digital functions and AVDD analogue functions. The digital supply is capable of running at a voltage of 1.8V for compatibility with the BB I/O levels.

After the phone is started, the DVDD voltage is always on, since it is supplied from VIO regulator.

AVDD can be off or on at power up depending which regulator is used for it.

Using VIO for DVDD supply

VIO is available on UEME. The digital supply is capable of running at a voltage of 1.8V for compatibility with the BB I/O levels.

Using external regulator for AVDD

External AVDD regulation voltage level is 2.8V

The analogue supply is fed from the external regulator whose output is enabled by the Genla signal.

Compass and phone basics

Phone directions

Directions with phone on this document is mentioned on Figure 23 Directions through phone.

Sensible use of compass function means that phone (and 2-axis magnetometer) is accurately in horizontal level. This is done with internal builder level (air bubble) on phone.

Measured and displayed numerical compass heading is angle between TOP direction and geographical north direction. Numerical values are part of 1/360 of full round circle.

Compass rose point graphical difference of TOP direction and geographical north direction (with declination angle). TOP direction is direction on users motion.

Figure 21: Directions Through Phone

General description

Operation modes

- Shutdown
 - -MagIC is set to stand-by mode
 - -Logic voltage VIO is always on
- Analog voltage supply is normally off, but other functions can switch voltage on
 - Active compass function
 - -External power supply is on
 - -MagIC is set to active mode
 - -System clock is activated
 - Production test mode
 - -As active mode but also offset strap current is activated

Compass function main features

Compass display menu

Compass function is controlled via UI SW menu structures. When compass display menu is selected, it starts compass function.

Compass display results

Compass azimuth result is displayed with heading angle with numerical mode and with (compass rose) pointer. Measurement is always continuous, only user action can stop actions.

Other functionality during active compass function:

Minimal TX RF

-Location update via network

- No charging
- Keyboard lights always on (also during calibration)

Compass calibration SW

Calibration is needed for compensate external magnetic field and improve performance of compass reading accuracy.

User assisted calibration

UI SW menu structure

- User select checked horizontal plane with no disturbance near of phone
- With very slow rotating (about 10s / round) MCU SW will find values for compensation during one round.
- SW calculates calibration values

Compass declination menu

Used for setting compensated declination angle. Declination values is accessible from special maps or lists of places. Declination angle value varies about $\pm 25^{\circ}$ depending geographical place on earth.

Supply interface for manual calibration, used also for resetting calibration values

Testpoints

Set/Reset

Set/Reset pulse after DC separation capacitor C314

Testpoint J327

VBRIDGE

Vbridge supply voltage for magnetometer's measurement bridges. Vbridge voltage is always on during measuring session.

Testpoint J326

• Nominal voltage level 2.2V ±2%

Channel output A

Channel A output from measurement bridge A. Signal is differential type.

Testpoints J331(+), J332(-)

Nominal voltage level is 1.1V to ground. Differential voltage level is 0.0V

Channel output B

Channel B output from measurement bridge B. Signal is differential type.

Testpoints J329(+), J328(-)

Nominal voltage level is 1.1V to ground. Differential voltage level is 0.0V

Service Software Interface (Phoenix)

AMS functions can use some internal parameters for compass functions. Those controls and values are available from Phoenix PCSW /Compass Control.

- Compass function on and off
- Heading angle result
- x, y results
- calibration values, read and set
 - min x (circle)
 - max x (circle)
 - min y (circle)
 - max y (circle)
 - scorra (ellipse)
 - scorrb (ellipse)
- Offset strap coil on and off
- Calibration routine must be capable to start from Phoenix menu

Manual calibration

Manual calibration is mainly used for resetting calibration values to zero values but also it is sensible for making small changes to calibration values.

- Values of basic correction: min x, max x, min y, max y,
- Values of sloped ellipse correction: scorra , scorrb

Performance

Calibration basics

Calibration process target is to normalize measured x and y value before calculation to heading angle, exactly: calibration removes harmful effects of phone own

Calibration is needed because every phone has different magnetic behaviour and also the geographical places are different

Recalibration is needed because phone has drift on magnetization level depending user actions and geographical place changes

Basically in phone levels are two type of normalization,

- offset drift
- ellipse correction

User action: rotate phone

• one to two round needed (360 to 720 degree)

Phone actions

- Measures x and y values during rotating
- Judges calibration success
- Calculates calibration output values

Calibration outputs (parameter values)

- offset drift values: xmin, xmax, ymin, ymax
 - ² 1 ellipse correction: scorra and scorrb

Figure 23: What Happened on Calibration (Track on x/y Plane while rotating)

Calibration process flow

Set phone to flat surface, far away from metals and magnetic fields

Set calibration mode on

Gently rotate phone until SW says "success or not"

- Speed 10s/ round
- Phone must be in all the time on same horizontal level
- Check compass functionality after calibration

If calibration is not successfully, try again

If calibration fails again, change place

• Try to find more magnetically undisturbed place

Compass digital values, limit values

Note: Sensitivity

• 0.5mGauss /digit (raw digit on x and y channels)

Limits:

Min x and min y

• typical range –2100 to 1000

Max x and max y

• typical range -1000 to 2100

Scorra

• typical range 1.0 to 1.5 (and -1.5 to -1.0)

Scorrb

- typical range 0.0 to 0.5 (and -0.5 to 0.0)
 - Gain - 0.1 Gauss field, gain min. 300 digit (tilt angle 0 degree) - 0.4 Gauss field, gain max. 2300 digit (tilt ange 0 degree)

Offset value, calculated as (max-gain2), not normalized

• typical range –1200 to 1200 for both channels

Gain ratio of x and y channels

• max. range 0.75 to 1.33, typical range 0.95 to 1.05

Offset strap coil difference (with and without offset strap coil current)

• 320 to 420 for both channels

Clock distribution

Figure 24: Clock Distribution Diagram

User Interface

Display

NPL-4/5 has 130 x130 pixel 12bpp (bits per pixel) passive matrix color STN display. LCD is connected to transceiver PWB by 10-pin board to board connector. Interface is using 9-bit data transfer. Partial display function is implemented in the module.

UI Board

NPL-4/5 consists of separate UI board, type designate *wk4*, which includes contacts for the keypad domes, Functional cover interface pads, Thermoter thermistor and LED's for keypad lighting. UI board is connected to main PWB through 20 pole board-to-board connector with springs.

5x5-matrix keyboard is used in NPL-4/5. Key pressing is detected by scanning procedure. Keypad signals are connected UPP keyboard interface.

When no key is pressed, row inputs are high due to UPP internal pull-up resistors. The columns are written zero. When key is pressed one row is pulled down and an interrupt is generated to MCU. After receiving interrupt, MCU starts scanning procedure. All columns are first written high and then one column at the time is written down. All other columns except one, which was written down, are set as inputs. Rows are read while column at the time is written is written down. If some row is down it indicates that key which is at the cross point of selected column and row was pressed. After detecting pressed key all register inside the UPP are reset and columns are written back to zero.

Table 28:	Key	mapping
-----------	-----	---------

	COLO	COL1	COL2	COL3	COL4
ROWO	VOL+	LEFT	SEND	END	RIGHT
ROW1	VOL-	SOFT LEFT	UP	DOWN	SOFT RIGHT
ROW2		1	4	7	*
ROW3	SELECT	2	5	8	0
ROW4	PTT	3	6	9	#

Power supply for LEDs

DC/DC converter generates VLED supply voltage for white LEDs. There are two white LEDs connected series in display and on keypad PWB in four branches. The flashlight has one white LED. Feedback resistors R300, R302 and R310 set output voltage. The voltage reference is 0.515V inside the driver.

Driver is controlled by the UEMEK via CALLED1 output. This signal is connected to driver EN-pin (on/off). R317 is used to increase converter output current.

Figure 28: VLED Voltage Supply

Keyboard LEDs driver

LEDs are supplied from VLED voltage throught current limiting circuit. Keyboard illumination is controlled by DLIGHT –line (UEMEK). BJT driver controls the constant current generator. DLIGHT line needs voltage matching for higher VLED voltage than battery voltage. Control line has capability to dimming. The DLIGHT line is common for display and keypad illumination driving.

Driver will work as constant current genertor increase or decrease the output voltage for LEDs to keep the current stable. This means that constant current flow through each branch. Serial resistance 39R is used to create the current limit with transistor Vbe voltage.

Figure 29: Keyboard Led Driver and Control Diagram

Display and air bubble LED driver

LEDs are supplied from VLED voltage throught current limiting circuit. Display and air bubble illumination is controlled by DLIGHT –line (UEMEK). BJT driver controls the constant current generator.

- Driver will work as constant current generator increase or decrease the output voltage for LEDs to keep the current stable. Serial resistance 33R is used to create the current limit with transistor Vbe voltage.

- Air bubble led is located under the air bubble. Its current consumption will be \sim 3.8mA.

Figure 30: Display and Air Bubble LEDs driver and Control Diagram

Flashlight LEDs driver

LED is supplied from VLED voltage throught current limiting circuit. Flashlight is controlled by CallLED2 line (UEMEK). BJT driver controls the constant current generator. CallLED2 line needs voltage matching for higher VLED voltage than battery voltage. Current consumption will be 20mA. - Driver will work as constant current generator increase or decrease the output voltage for LEDs to keep the current stable. Serial resistance 33R is used to create the current limit with transistor Vbe voltage.

Figure 31: Flashlight Driver and Control

Internal microphone

The internal microphone capsule is mounted into the system connector assy, which is connected to engine board with springs. Microphone is omni directional and it's connected to the UEMEK microphone input MIC1P/N. The microphone input is symmetric and the UEMEK (MICB1) provides bias voltage.

UEMEk 220 MIC1B 2.2u 1k 7pF MIC1N 2k2 33nF 27pF 1nF 33nF 2k2 1000Ω@100MHz MIC1P ┨╋ 27pF 1k 1nF

Figure 32: Microphone Connection

Internal speaker

There is a dynamic earpiece with impedance of 32 ohms. The earpiece is low impedance one since the sound pressure is to be generated using current and not voltage as the supply voltage is restricted to 2.7V. The earpiece is driven directly by the UEMEK and the earpiece driver (EARP & EARN outputs) is a fully differential bridge amplifier with 6 dB gain.

IHF

The NPL-4/5 uses the D-class amplifier to gain signal to IHF speaker. The integrated Hands Free Speaker is used to generate polyphonic ringing tones, FM radio, PoC and IHF audios. Speaker capsule is mounted under the antenna. Spring contacts are used to connect the IHF Speaker contacts to the system PWB.

Class-D amplifier, it produces high efficiency, which leads to the lower current consumption and makes the thermal issues negligible as well compared to the traditional solutions.

Headset connections

NPL-4/5 is designed to support fully differential external audio accessory connection. A headset can be directly connected to Tomahawk system connector. Mono and stereo audios are supported to earpieces and mono for microphone audios.

Headset implementation uses separate microphone and earpiece signals. The accessory is detected by the HeadInt signal when the plug is inserted. Normally when no plug is present the internal pull-down on the HF pin pulls down the HeadInt signal. Due to that the comparator level is 1.9V the HeadInt signal will not change state even if the HF output is biased to 0.8V. When the plug is inserted the switch is opened and the HeadInt signal is pulled up by the internal pull-up. The 1.9V threshold level is reached and the comparator output changes to low state causing an interrupt.

The hook signal is generated by creating a short circuit between the headset microphone signals. When no accessory is present, the UEMEK internal resistor pulls up the HookInt signal. When the accessory is inserted and the microphone path is biased the HookInt signal decreases to 1.8V due to the microphone bias current flowing through the resistor. When the button is pressed the microphone signals are connected together, and the HookInt input will get half of micbias dc value 1.1 V. This change in DC level will cause the HookInt comparator output to change state, in this case from 0 to 1. The button can be used for answering incoming calls but not to initiate outgoing calls.

Figure 35: NPL-4/5 Audio Connections

Vibra

A vibra alerting device is used to generate a vibration signal for an incoming call. Vibra is located in the left side of the phone just above the battery block and it is SMD component. Vibra interface is the same like other DCT4 projects. The vibra is controlled by a PWM signal from the UEMEK. Frequency can be set to 64, 129, 258 or 520 Hz and duty cycle can vary between 3% – 97%.

RF Module

The RF module comprises all RF functions of the NPL-4/5 engine. The US variant NPL-4 includes GSM850/GSM1800/GSM1900 bands and the EU variant NPL-5 EGSM900 / GSM1800 and GSM1900 bands.

Both variants support GPRS (MSC10), EGPRS (MSC6) and HSCSD protocols and multislot classes 1to 6. The aim is to introduce Push to talk Over Cellular (PoC) feature in both variants.

The core of the RF is the Helgo RF ASIC. Other main components include:

- the power amplifier module which includes two amplifier chains, one for GSM850/ EGSM900 and the other for GSM1800/1900.

- 26 MHz VCTCXO for frequency reference

- 3296-3980 MHz SHF VCO (super high frequency voltage controlled oscillator)

- front end module with a RX/TX switch and four RF bandpass SAW filters

EGSM900 and GSM1800 LNAs (Low Noise Amplifier) for the receiver front-end are integrated in the Helgo while GSM1900 LNA is external.

NPL-4/5 is using lead free components and lead free SMD process.

The RF module includes two metal shields: one for the PA, antenna switch module and filters and one for Helgo, VCO and VCTCXO.

Internal antenna is based on the PIFA (Planar Inverted F-Antenna) concept.

The RF is controlled by the baseband section of the engine through a serial bus, referred later on as RFBus. This serial bus is used to pass the information about the frequency band, mode of operation, and synthesizer channel for the RF. In addition, exact timing information and receiver gain settings are transferred through the RFBus.

Physically, the bus is located between the baseband ASIC called UPP and the Helgo. Using the information obtained from UPP the Helgo controls itself to the required mode of operation and further sends control signals to the front end and power amplifier modules. In addition to the RFBus there are other interface signals for the power control loop and VCTCXO control and for the modulated waveforms.

RF frequency plan

DC characteristics

Regulators

The transceiver baseband section has a multi function analog ASIC, UEMEK, which contains among other functions six pieces of 2.78 V linear regulators and a 4.8 V switching regulator. All the regulators can be controlled individually by the 2.78 V logic directly or through a control register. Normally, direct control is needed because of switching speed requirement: the regulators are used to enable the RF-functions which means that the controls must be fast enough.

The seven regulators are named VR1 to VR7. VrefRF01 is used as the reference voltages for the Helgo, VrefRF01 (1.35V) for the bias reference and for the RX ADC (analog-to-digital converter) reference.

The regulators (except for VR7) are connected to the Helgo. Different modes of operation can be selected inside the Helgo according to the control information coming through the RFBus.

List of the needed supply voltages

Volt. source	Load
VR1	PLL charge pump (4.8 V)
VR2	TX modulators, ALCs, driver
VR3	VCTCXO, synthesizer digital parts
VR4	Helgo pre-amps, mixers, DtoS
VR5	dividers, LO-buffers, prescaler
VR6	LNAs, Helgo baseband (Vdd_bb)
VR7	VCO
VrefRF01	ref. voltage for Helgo
Vbatt	РА

Г

Power distribution

Figure 37: Power distribution diagram

UEM	
VR1	4.75 V [4.6V 4.9V] → charge pump (VCP)
VR2	2.78 V [2.70V 2.86V]
	TX buffer & EDGE ALCs (VRF_TX)
VR3	2.78 V [2.70V 2.86V]
	→ digital interface (VDIG)
VR4	2.78 V [2.70V 2.86V]
	→ Bias & Rx CH filters (VF_RX)
	→ RF controls (VPAB_VLNA)
VR5	2.78 V [2.70V 2.86V] → PLL prescaler (VPRE)
	→ phasing dividers of Rx (VLO)
VR6	2.78 V [2.70V 2.86V] → BB buffer (VDIG)
VR7	2.78 V [2.70V 2.86V] 16 mA [max. 20 mA] VCO (VCC_VCO)
VrefRF01	1.35 V [1.32V 1.38V] 100 uA → bias reference (VB_EXT)
VrefRF02	1.35 V [1.32V 1.38V] 100 uA
	-

RF characteristics

Parameter	Unit and value	
Cellular System	GSM850/900, GSM1800 and GSM1900	
Modulation schemes	GMSK, 8-PSK	
RX Frequency Band	GSM850: 824- 849 MHz GSM900: 925 - 960 MHz GSM1800: 1805 - 1880 MHz GSM1900: 1930 - 1990 MHz	
TX Frequency Band	GSM850: 869- 894 MHz GSM900: 880 - 915 MHz GSM1800: 1710 - 1785 MHz GSM1900: 1850 - 1910 MHz	
Output Power GMSK	GSM850: +5+33 dBm / 3.2 mW 2 W GSM900: +5+33 dBm / 3.2 mW 2 W GSM1800: +0+30 dBm / 1.0 mW 1 W GSM1900: +0+30 dBm / 1.0 mW 1 W	
Output Power 8-PSK	GSM850: +5+27 dBm / 3.2 mW 0.5 W GSM900: +5+27 dBm / 3.2 mW 0.5 W GSM1800: +0+26 dBm / 1.0 mW 0.4 W GSM1900: +0+26 dBm / 1.0 mW 0.4 W	
Duplex Spacing	GSM850: 45MHz GSM900: 45MHz GSM1800: 95MHz GSM1900:: 80MHz	
Number of RF Channels	GSM850: 124 GSM900: 174 GSM1800: 374 GSM1900: 300	
Channel Spacing	200 kHz (each band)	
Number of TX Power Levels GMSK	GSM850: 15 GSM900 : 15 GSM1800: 16 GSM1900: 16	
Number of TX Power Levels GMSK	GSM850: 12 GSM900 : 12 GSM1800: 14 GSM1900: 14	
Sensitivity, static channel (+25°C)	EGSM: -102dBm GSM900: -102dBm GSM1800: -102dBm GSM1900: -102dBm	
Frequency Error, static channel	< 0.1 ppm	

Nokia	Customer	Care
-------	----------	------

RMS Phase Error	< 5.0°
Peak Phase Error	< 20.0°

RF block diagram

The block diagram of the RF module can be seen below. The detailed functional description is given in the following sections.

RF block diagram NPL-4/5

Frequency synthesizers

The VCO frequency is locked by a phase locked loop (PLL) and VCTCXO which is running at 26 MHz.

The frequency of the VCTCXO is in turn locked into the frequency of the base station with the help of an AFC voltage which is generated in UEMEK by an 11 bit D/A (digital-to-analog) converter.

The PLL is located in the Helgo and is controlled through the RFBus.

Loop filter filters out the comparison pulses of the phase detector and generates a DC control voltage to the VCO.

The dividers are controlled via the RFBus. RFBusData is for the data, RFBusClk is a serial clock for the bus and RFBusEna1X is a latch enable, which stores the new data into the dividers.

Receiver

Each receiver path is a direct conversion linear receiver.

From the antenna the received RF-signal is fed to the front end module where a diplexer first divides the signal to two separate paths according to the band of operation: either lower, GSM850/EGSM900 or upper, GSM1800/GSM1900 path.

At each of the paths a pin-diode switch is used to select either receive or transmit mode. At the upper band in receive mode either GSM1800 or GSM1900 path is further selected by another pin-diode switch.

The selections are controlled by the Helgo which obtains the mode/band and timing information through the RFBus. After the switches there is a bandpass filter at each of the receiver paths. These filters are included in the front end module, except for GSM1900 where it is external.

Then the signal is fed to the LNAs which are integrated in the Helgo in GSM850/ EGSM900 and GSM1800 while in GSM1900 the LNA is external.

In GSM1900 the amplified signal is fed to a balun and thereafter to a pregain stage of the mixer while in GSM850/EGSM900 and GSM1800 the LNA's are directly connected to the pregain stages without having SAW filters in between. The pregain stages as well as all the following receiver blocks are integrated in the Helgo. The LNAs have three gain levels. The first one is the maximum gain, the second one is about 30 dB below the maximum, and the last one is the off state.

After the pregain stages there are demodulator mixers at each signal path to convert the RF signal directly down to baseband I and Q signals. Local oscillator signals for the mixers are generated by an external VCO the frequency of which is divided by two in GSM1800 and GSM1900 and by four in GSM850/EGSM900. Those frequency dividers are integrated in the Helgo and in addition to the division they also provide accurate phase

shifting by 90 degrees which is needed for the demodulator mixers.

The demodulator output signals are all differential. After the demodulators the amplifiers convert the differential signals to single ended. Before that, they combine the signals from the three demodulators to a single path which means that from the output of the demodulators to the baseband interface there are just two signal paths (I and Q) which are common to all the frequency bands of operation.

In addition, the amplifiers perform the first part of the channel filtering and AGC: they have two gain stages, the first one with a constant gain of 12 dB and 85 kHz -3 dB bandwidth and the second one with a switchable gain of 6 dB and -4 dB. The filters in the amplifier blocks are active RC filters. The rest of the analog channel filtering is provided by blocks called BIQUAD.

After the amplifier and BIQUAD blocks there is another AGC-amplifier which provides a gain control range of 42 dB in 6 dB steps.

In addition to the AGC steps, the last AGC stage also performs the real time DC offset compensation which is needed in a direct conversion receiver.

After the last AGC and DC offset compensation stages the single ended and filtered Iand Q-signals are finally fed to the RX ADCs. The maximum peak-to-peak voltage swing for the ADCs is 1.45 V.

In the Helgo there is a port called RF-temp which can be used for compensation of RX SAW filters thermal behavior. The temperature information to the Helgo comes from a voltage over two diodes when the diodes are fed with temperature independent, constant current.

Transmitter

The transmitter consists of two final frequency IQ-modulators and power amplifiers, for the lower and upper bands separately, and a power control loop. The IQ-modulators are integrated in the Helgo, as well as the operational amplifiers of the power control loop. The two power amplifiers are located in a single module which also includes the power detector circuitry. Loop filter parts of the power control loop are implemented as discrete components on the PWB. In the GMSK mode the power is controlled by adjusting the DC bias levels of the power amplifiers.

The modulated waveforms, i.e. the I- and Q-signals, are generated by the baseband part of the engine module. After post filtering, implemented as RC-networks, they go into the IQ-modulator. Local oscillator signals for the modulator mixers are generated by an external VCO the frequency of which is divided by two in GSM1800 and in GSM1900 and by four in GSM850/EGSM900. Those frequency dividers are integrated in the Helgo and in addition to the division they also provide accurate phase shifting by 90 degrees which is needed for the modulator mixers.

At the upper band there is a dual mode buffer amplifier at the output of the IQ-modulator. The final amplification is realized by a three stage power amplifier. There are two different amplifier chains in a single amplifier module, one for GSM850/ EGSM900 and one for GSM1800/GSM1900. The lower band power amplifier is able to deliver over 2 W of RF power, while the capability of the upper band amplifier is over 1 W.

In the GMSK mode the gain control is implemented by adjusting the bias voltages of the first two transistor stages thereby reaching the dynamic range of over 70 dB.

After the power amplifier the signal goes through a low pass filter and a pin-diode switch which is used to select between the reception and transmission. Finally, the two signal paths, lower and upper band, are combined in a diplexer after which the signal is routed through the antenna.

Power control circuitry consists of a power amplifier and an error amplifier. The power amplifier produces a voltage level related to the value of the RF voltage. It is fed to the negative input of the error amplifier where it is compared to the level of the reference signal, TXC, obtained from UEMEK. Depending on the difference between the two signals the biases of the power amplifier stages are either increased or decreased to get the correct power level out of the power amplifier.

Antenna switch module

The antenna switch module includes:

- Antenna 50 ohm input
- RX GSM850/900/1800/1900 single ended outputs,
- TXs EGSM900 and GSM1800/GSM1900 single 50 ohm input
- -3 control lines from the Helgo

Figure 39: Antenna Switch Module

Power Amplifier

The power amplifier includes:

- 50 ohm input and output, GSM850/EGSM900 and GSM1800/GSM1900
- internal power detector
- EDGE/GSM mode selector

Figure 40: Power Amplifier

RF ASIC Helgo

The RF ASIC module includes:

- TFBGA88
- Balanced I/Q demodulator and balanced I/Q modulator
- Power control operational amplifier, acts as an error amplifier
- The signal from VCO is balanced, frequencies 3296 to 3980 MHz
- GSM850/EGSM900 and GSM1800 low noise amplifier (LNA) are integrated.

The Helgo can be tested by test points only.

AFC function

AFC is used to lock the transceiver's clock to the frequency of the base station.

Antenna

The NPL-4 (GSM850/GSM1800/GSM1900) and NPL-5 (EGSM900/GSM1800/GSM1900) transceivers have their own internal antennas.